your name
Physics 321 Midterm \#1 Practice - Monday, Oct. 3, 2022
Some integrals:

$$
\begin{aligned}
\int \frac{d x}{1+x^{2}} & =\tan ^{-1}(x) \\
\int \frac{d x}{1-x^{2}} & =\tanh ^{-1}(x) \\
\int \frac{d x}{\sqrt{1-x^{2}}} & =\sin ^{-1}(x), \\
\int \frac{d x}{\sqrt{1+x^{2}}} & =\sinh ^{-1}(x), \\
\int d x \tan (x+\phi) & =-\ln (\cos (x+\phi)) \\
\int d x \tanh (x+a) & =\ln (\cosh (x+a)) .
\end{aligned}
$$

\qquad

1. (30 Brownie points) A large space shark is bearing down on the star ship Enterprise. The shark has mass M_{0} and velocity v_{0}. The warp drive of the Enterprise is broken, and its only hope to slowing down the shark is to fire small frozen tuna pellets of mass m into the shark's angry open mouth. As the shark has an insatiable appetite, its mouth remains open as it happily swallows the pellets. The muzzle velocity of the pellets is u and the Enterprise can fire at a rate of R pellets per unit time. The first pellets are swallowed by the shark at time $t=0$. What is the shark's velocity as a function of time?

Solution: conservation of momentum:

$$
\begin{align*}
M(t) v(t) & =M_{0} v_{0}-\left(M(t)-M_{0}\right) u \\
v(t) & =-u+M_{0} \frac{v_{0}+u}{M} \tag{1}
\end{align*}
$$

The number of pellets per unit length in the stream is $\rho=R / u$. The rate of mass absorption is

$$
\begin{aligned}
\dot{M} & =m \rho(v+u) \\
& =m R \frac{u+v}{u} \\
& =\frac{m M_{0} R}{M} \frac{\left(v_{0}+u\right)}{u} \\
M d M & =\frac{\left(v_{0}+u\right)}{u} m M_{0} R d t, \\
M^{2}-M_{0}^{2} & =\frac{\left(v_{0}+u\right)}{u} m M_{0} R t, \\
M(t) & =\sqrt{M_{0}^{2}+\frac{\left(v_{0}+u\right)}{u} m M_{0} R t}, \\
& =M_{0} \sqrt{1+\frac{\left(v_{0}+u\right)}{u}\left(m / M_{0}\right) R t} \\
v & =-u+\frac{v_{0}+u}{\sqrt{1+\frac{\left(v_{0}+u\right)}{u}\left(m / M_{0}\right) R t}}
\end{aligned}
$$

\qquad
2. A particle of mass m experiences a potential,

$$
V(x)=-\frac{1}{2} m \omega^{2} x^{2} .
$$

Note that this is the opposite sign as a harmonic oscillator. The particle crosses the origin at time $t=0$ with velocity v_{0}.
(a) (10 Brownie pts) Find the velocity as a function of the position x.
(b) (10 Brownie pts) Find the time as a function of x.
(c) (5 Brownie pts) Find the position as a function of time.
(d) (5 Brownie pts) Give the answer to (c) but with for a problem where the sign of $V(x)$ switches back to the usual sign, $V(x)=m \omega^{2} x^{2} / 2$. You need not show your work.

Solution: a)

$$
\begin{aligned}
\frac{1}{2} m v^{2}=\frac{1}{2} m v_{0}^{2}+\frac{1}{2} m \omega^{2} x^{2} & \\
v & =\sqrt{v_{0}^{2}+\omega^{2} x^{2}}
\end{aligned}
$$

b)

$$
\begin{aligned}
t & =\int \frac{d x}{v(x)} \\
& =\int \frac{d x}{\sqrt{v_{0}^{2}+\omega^{2} x^{2}}}, \\
& =\frac{1}{\omega_{0}} \sinh ^{-1}\left(\omega x / v_{0}\right), \\
x & =\frac{v_{0}}{\omega_{0}} \sinh (\omega t) .
\end{aligned}
$$

For usual h.o. potential,

$$
x=\frac{v_{0}}{\omega_{0}} \sin (\omega t) .
$$

\qquad
3. A platic ball of mass m is fired straight up with initial speed v_{0}. The ball feels a drag force, $\left|F_{\text {drag }}\right|=b A v^{2}$, where b is the drag coefficient and A is the cross-sectional area.
(a) (5 pts) What is the terminal velocity, v_{t} ?
(b) (10 pts) Solve for the ball's velocity as a function of time on the way up. Give your answer in terms of v_{0}, g and v_{t}.
(c) $(5 \mathrm{pts})$ How much time is required to reach the top of the trajectory?
(d) $(5 \mathrm{pts})$ Check the units of your answer.

Solution: a)

$$
\begin{aligned}
m g & =b A v_{t}^{2} \\
v_{t} & =\sqrt{m g / b A}
\end{aligned}
$$

b)

$$
\begin{aligned}
\dot{v} & =-g-b A v^{2} / m, \\
& =-g\left(1+v^{2} / v_{t}^{2}\right), \\
\int \frac{d v}{\left(1+v^{2} / v_{t}^{2}\right)} & =-g t, \\
v_{t} \tan ^{-1}\left(v / v_{t}\right)-v_{t} \tan ^{-1}\left(v_{0} / v_{t}\right) & =-g t, \\
v & =v_{t} \tan \left[\tan ^{-1}\left(v_{0} / v_{t}\right)-g t / v_{t}\right]
\end{aligned}
$$

c) set $v=0$

$$
t=\frac{v_{t}}{g} \tan ^{-1}\left(v_{0} / v_{t}\right)
$$

d) arguments of \tan are dimensionless v_{t} / g has units of time.

