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1. – DWBA70

The codes DWBAxx computes the inelastic scattering of nucleons on a target of which the excited state
is described microscopically by particle-hole configurations, with a two body interaction. It is based on the
’helicity formalism of the multipole expansion of this interaction.

1.1. – THE TWO HELICITY FORMALISMS

The expansion of a distorted wave is usually written as:

Ξ(+)
σ (~k, ~r) =

4π
kr

∑
j,l,m,µ,µ′,σ′

il Ξlj(kr) < l
1
2
µσ|jm >< l

1
2
µ′σ′|jm > Y µl

?(k̂)Y µ
′

l (r̂) |σ′ > (I – 1)

where σ is the spin projection of the in going plane wave on an arbitrary axis and σ′ its projection at
the point ~r on the same axis.

1.1.1. – DESCRIPTION OF A DISTORTED WAVE

If we choose this arbitrary axis along ~k, we introduce the usual helicity defined in [1] M.
JACOB and G. C. WICK, Ann. of Phys. 7 , 404 (1959). with λ instead of σ:

|σ >=
∑
λ

R
( 1

2 )

σ,λ

?

(k̂)|λ > (I – 2)

The helicity formalism for multipole expansion as defined in [2] J. RAYNAL, Nucl. Phys.
A97, 593 (1967). and also described in [3] J. RAYNAL, in The structure of Nuclei (IAEA,
Vienna, 1972). consists in a similar projection of |σ′ > along ~r. If φr, θr and ψr are the Euler
angles between a frame with its z-axis along ~k and a frame with its z-axis along ~r, this wave
function may be written as:

Ξ(+)
λ (~k, ~r) =

1
2k
√

2π

∑
j,λ′

(2j + 1)Ξjλ,λ′(kr)R
(j)
λ,λ′

?
(φr, θr, ψr)|λ′ > (I – 3)

where the helicity functions Ξjλ,λ′ are:

Ξjλ,λ′ =
ij−

1
2

r

{
Ξl=j− 1

2 ,j
(kr) + i(−)λ−λ

′
Ξl=j+ 1

2 ,j
(kr)

}
(I – 4)

They do not have a well-defined parity.

1.1.2. – DESCRIPTION OF A BOUND STATE

The usual description of the bound state of a spin 1
2 particle with orbital angular momentum

l, a total angular momentum j and its projection m on the quantisation axis is:

|jm >= flj(r)
∑
µ,σ

< l
1
2
µσ|jm > Y µl (θ, φ)|σ > (I – 5)
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where |σ > is the spin eigenfunction with a projection σ along the axis of quantisation and
flj(r) is a radial function normalised according to:∫ ∞

0

r2f2
lj(r)dr = 1. (I – 6)

Projecting |σ > on ~r, using the relation between spherical harmonics and rotation matrix
elements, we get:

|jm >=
√

2j + 1
4π

∑
λ

φjλ(r)R(j)
m,λ

?
(φ, θ, ψ)|λ > (I – 7)

with
φj1

2
(r) = (−)l+j−

1
2 fij(r) φj− 1

2
(r) = fij(r) (I – 8)

All references to the orbital angular momentum have disappeared from the description
of the bound state, but there are now two radial functions φj± 1

2
which are equal within a

sign for a state of well-defined parity.
It should be noted that a helicity state as defined here has no direct physical

significance: there must be always two helicity states.

1.2. – MULTIPOLE EXPANSION IN THE HELICITY FORMALISM

If no spins are involved, the interaction can be expanded around the origin as follows:

V (|~r1 − ~r2|) =
∑
L

(2L+ 1)VL(r1, r2)PL(cos θ) (I – 9)

and there are relations between multipoles, related to the Fourier transform of V:

W (q) =
∫

exp(i~q.~r) V (r) d3r,

VL(r1, r2) =
2
π

∫ ∞
0

q2W (q)jL(qr1)jL(qr2)dq
(I – 10)

The recurrences between the Bessel functions can be used to obtain relations between multipoles.
For spin 1

2 particles, it can be written:

V (1, 2) =
∑

J,λ1,λ2,λ′1,λ
′
2

(2J + 1)|λ′1 > |λ′2 > V Jλ′1λ′2,λ1λ2
(1, 2) < λ1| < λ2|

×
∑
µ

(−)µR(J)
µ,λ1−λ′1

(φ1, θ1, ψ1)R(J)
−µ,λ2−λ′2

(φ2, θ2, ψ2)
(I – 11)

where φ1, θ1, ψ1 describes a co-ordinate system with z-axis along ~r1 and φ2, θ2, ψ2 another one with
its z-axis along ~r2. The total expression is independent of ψ1 and ψ2.
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1.2.1. – SYMMETRIES OF THE MULTIPOLE EXPANSION

Some symmetry properties are also required, in general, of the two-body force. In order
to study their consequences, it is simpler to choose the axis of quantisation along ~r1 together
with a frame of reference for particle 2 given by the Euler angles (0, θ, 0) and obtain:

Vλ′1λ′2,λ1λ2(1, 2) =
∑
J

V Jλ′1λ′2,λ1λ2
(1, 2)(−)λ

′
1−λ1r

(J)
λ′1−λ1,λ2−λ′2

(θ) (I – 12)

The action of the parity operator P is the same as for standard helicity because ~r and impulsion
behave similarly:

V Jλ′1λ′2,λ1λ2
(1, 2) = V J−λ′1−λ′2,−λ1−λ2

(1, 2) (I – 13)

Time reversal invariance depends on the nature of the operators:

V Jλ′1λ′2,λ1λ2
(1, 2) = ηV J−λ1−λ2,−λ′1−λ

′
2
(1, 2) (I – 14)

where η = −1 for a derivative term or an expression odd in the permutation of λ and λ′.
When the two nucleons are identical:

V Jλ′1λ′2,λ1λ2
(1, 2) = V Jλ′2λ′1,λ2λ1

(2, 1) (I – 15)

For a given value of J , the matrix Vλ′1λ′2,λ1λ2(1, 2) can be written on the basis of Kronecker
products of 2× 2 matrices. They are two even matrices:∣∣∣∣ 1 0

0 1

∣∣∣∣ , ∣∣∣∣ 0 1
1 0

∣∣∣∣ , (I – 16)

and two odd ones: ∣∣∣∣−1 0
0 1

∣∣∣∣ , ∣∣∣∣ 0 −1
1 0

∣∣∣∣ . (I – 17)

If parity conservation applies, the two-body interaction can be separated into an even part:

aJ(1, 2)
∣∣∣∣ 1 0
0 1

∣∣∣∣⊗ ∣∣∣∣ 1 0
0 1

∣∣∣∣+bJ(1, 2)
∣∣∣∣ 1 0
0 1

∣∣∣∣⊗ ∣∣∣∣ 0 1
1 0

∣∣∣∣
+b′J(1, 2)

∣∣∣∣ 0 1
1 0

∣∣∣∣⊗ ∣∣∣∣ 1 0
0 1

∣∣∣∣+cJ(1, 2)
∣∣∣∣ 0 1
1 0

∣∣∣∣⊗ ∣∣∣∣ 0 1
1 0

∣∣∣∣
(I – 18)

and an odd part:

dJ(1, 2)
∣∣∣∣−1 0

0 1

∣∣∣∣⊗ ∣∣∣∣−1 0
0 1

∣∣∣∣+eJ(1, 2)
∣∣∣∣−1 0

0 1

∣∣∣∣⊗ ∣∣∣∣ 0 −1
1 0

∣∣∣∣
+e′J(1, 2)

∣∣∣∣ 0 −1
1 0

∣∣∣∣⊗ ∣∣∣∣−1 0
0 1

∣∣∣∣+fJ(1, 2)
∣∣∣∣ 0 −1
1 0

∣∣∣∣⊗ ∣∣∣∣ 0 −1
1 0

∣∣∣∣
(I – 19)

If the two particle are identical:

aJ(1, 2) = aJ(2, 1), bJ(1, 2) = b′J(2, 1) cJ(1, 2) = cJ(2, 1),

cJ(1, 2) = cJ(2, 1), eJ(1, 2) = e′J(2, 1) fJ(1, 2) = fJ(2, 1),
(I – 20)
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If time-reversal applies, a, c, d, e and f must be expressed in terms of time-reversal invariant
operators, and b must change sign; consequently, b vanishes for a local interaction.

As the absolute value of the magnetic quantum numbers of the reduced matrix element
must be less or equal to J , some two-body form factors vanish for J = 0:

a0(1, 2) 6= 0, b0(1, 2) = b′0(1, 2) = c0(1, 2) = 0,

d0(1, 2) 6= 0, e0(1, 2) = e′0(1, 2) = f0(1, 2) = 0,
(I – 21)

1.2.2. – MULTIPOLE EXPANSION OF CENTRAL AND TENSOR INTERACTIONS

When the usual multipole expansion of the form factor of the interaction is given by:

V (|~r1 − ~r2|) =
∑
L

(2L+ 1)VL(r1, r2)PL(cos θ) (I – 22)

with the central interaction V (|~r1 − ~r2|) we get for the even part:

aJ = VJ(r1, r2)

bJ = cJ = 0
(I – 23)

and for the odd part:
dJ = eJ = fJ = 0 (I – 24)

with the central interaction V (|~r1 − ~r2|)(~σ1.~σ2) we get for the even part:

aJ = bJ = 0

cJ = −VJ(r1, r2)
(I – 25)

and for the odd part:

dJ =
1

2J + 1
{JVJ−1(r1, r2) + (J + 1)VJ+1(r1, r2)}

eJ =

√
J(J + 1)
2J + 1

{VJ−1(r1, r2)− VJ+1(r1, r2)}

fJ =
1

2J + 1
{(J + 1)VJ−1(r1, r2) + JVJ+1(r1, r2)}

(I – 26)

To be able to do the multipole expansion of a tensor interaction, we use:

V (|~r1 − ~r2|)
[
3
{

(~σ1.(~r1 − ~r2)
}{

(~σ2.(~r1 − ~r2)
}
− (~r1 − ~r2)2~σ1.~σ2

]
(I – 27)

which is the usual tensor interaction multiplied by: (~r1 − ~r2)2. We get for its even part:

aJ(1, 2) = bJ(1, 2) = 0,

cJ(1, 2) = (r2
1 + r2

2)VJ(r1, r2)− r1r2

{2J + 3
2J + 1

VJ−1(r1, r2) +
2J − 1
2J + 1

VJ+1(r1, r2)
} (I – 28)
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and for its odd part:

dJ(1, 2) = 2(r2
1 + r2

2)
{ J

2J + 1
VJ−1(r1, r2) +

(J + 1)
2J + 1

VJ+1(r1, r2)
}
− r1r2{ J(J − 1)

(2J − 1)(2J + 1)
VJ−2(r1, r2) +

14J2 + 14J − 10
(2J − 1)(2J + 3)

VJ(r1, r2) +
(J + 1)(J + 2)

(2J + 1)(2J + 3)
VJ+2(r1, r2)

}
eJ(1, 2) = (2r2

1 − r2
2)

√
J(J + 1)
2J + 1

{
VJ−1(r1, r2)− VJ+1(r1, r2)

}
+ r1r2

√
J(J + 1){ J − 1

(2J − 1)(2J + 1)
VJ−2(r1, r2) +

1
(2J − 1)(2J + 3)

VJ(r1, r2)− J + 2
(2J + 1)(2J + 3)

VJ+2(r1, r2)
}

fJ(1, 2) = −(r2
1 + r2

2)
{ (J + 1)

2J + 1
VJ−1(r1, r2) +

J

2J + 1
VJ+1(r1, r2)

}
− r1r2{ (J − 1)(J + 1)

(2J − 1)(2J + 1)
VJ−2(r1, r2)− 10J2 + 10J − 9

(2J − 1)(2J + 3)
VJ(r1, r2) +

J(J + 2)
(2J + 1)(2J + 3)

VJ+2(r1, r2)
}

(I – 29)

1.3. – MATRIX ELEMENT BETWEEN BOUND STATES

After integration over angles, using the helicity formalism for the interaction and the bound
states:

< j′1m
′
1| < j′2m

′
2|V (1, 2)|j1m1 > |j2m2 >

=
∑
J,µ

(−)j1−m1+j′2−m
′
2(2J + 1)

( j′1 J j1

m′1 µ −m1

)( j′2 J j2

m′2 µ −m2

)
fJj′1j′2,j1j2

(I – 30)

where
fJj′1j′2,j1j2

=
∑

λ′1,λ
′
2,λ1,λ2

1
4

√
(2j′1 + 1)(2j′2 + 1)(2j1 + 1)(2j2 + 1)

× (−)j1−λ1+j′2−λ2

( j′1 J j1

λ′1 λ1 − λ′1 − λ1

)( j′2 J j2

λ′2 λ2 − λ′2 − λ2

)
×
∫ ∫

V Jλ′1λ′2,λ1λ2
(1, 2)φj

′
1?

λ′1
(r1)φj

′
2?

λ′2
(r2)φj1?λ1

(r1)φj2?λ2
(r2)r2

1r
2
2dr1dr2

(I – 31)

1.3.1. – PARTICLE-PARTICLE AND PARTICLE-HOLE MATRIX ELEMENT

The antisymmetrised particle-particle matrix element is:

< j′1 j
′
2; JM |V (1, 2)|j1 j2; JM >

=
∑

m′1,m
′
2,m1,m2

< j1 j2 m1 m2|J M >< j′1 j
′
2 m

′
1 m

′
2|J M >

× {< j′1m
′
1| < j′2m

′
2|V (1, 2)(|j1m1 > |j2m2 > −|j2m2 > |j1m1 >)}

=
∑
J′

(−)J+j1+j2(2J ′ + 1)
{ j1 j2 J

j′2 j′1 J ′

}
fJ
′

j′1j
′
2,j1j2

−
∑
J′

(2J ′ + 1)
{ j1 j2 J

j′1 j′2 J ′

}
fJ
′

j′1j
′
2,j2j1

(I – 32)
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The antisymmetrised particle-hole matrix element is:

< j′1 j
−1
1 ; JM |V (1, 2)|j2 j′−1

2 ; JM >=∑
m′1,m

′
2,m1,m2

(−)j1−m1+j′2−m
′
2 < j′1 j1 m

′
1 −m1|J M >< j2 j

′
2 m2 −m′2|J M >

× {< j′1m
′
1| < j′2m

′
2|V (1, 2)(|j1m1 > |j2m2 > −|j2m2 > |j1m1 >)}

= fJj′1j′2,j1j2
−
∑
J′

(−)j1+j2+J+J′(2J ′ + 1)
{ j1 j′1 J

j2 j′2 J ′

}
fJ
′

j′1j
′
2,j2j1

(I – 33)

The matrix element fJ is the direct particle-hole term and it involves only multipoles with the
J-value to which the particle and the hole are coupled.

In order to evaluate it, let us perform successively the integration and the summation on
the helicities of particle 1 to obtain a one-body form factor:

F
Jj1j

′
1

λ′2λ2
(2) =

∑
λ′1,λ1

(−)j1−λ1
1
2

√
(2j1 + 1)(2j′1 + 1)

2J + 1

( j′1 J j1

λ′1 λ1 − λ′1 − λ1

)
×
∫
V Jλ′1λ′2,λ1λ2

(1, 2)φj
′
1?

λ′1
(r1)φj1λ1

(r1)r2
1dr1

(I – 34)

and then the same operation on particle 2:

fJλ′1λ′2,λ1λ2
=
∑
λ′2,λ2

(−)j
′
2−λ2

1
2

√
(2j2 + 1)(2j′2 + 1)

2J + 1

( j′2 J j2

λ′2 λ2 − λ′2 − λ2

)
×
∫
F
Jj′1j1
λ′2λ2

φ
j′2?

λ′2
(r2)φj2λ2

(r2)r2
2dr2

(I – 35)

The one-body form factor can be expressed with the elementary matrices:

F Jj1j
′
1(2) = AJj1j

′
1

∣∣∣∣ 1 0
0 1

∣∣∣∣+BJj1j
′
1

∣∣∣∣ 0 1
1 0

∣∣∣∣
+ CJj1j

′
1

∣∣∣∣−1 0
0 1

∣∣∣∣+DJj1j
′
1

∣∣∣∣ 0 −1
1 0

∣∣∣∣λ (I – 36)

1.3.2. – PARTICLE-HOLE GEOMETRICAL COEFFICIENT

When the matrix for the particle 1 is diagonal in the helicity space, the geometrical coef-
ficient becomes:

GJj1j′1
= (−)j1+ 1

2

√
(2j1 + 1)(2j′1 + 1)

( j′1 J j1

− 1
2 0 1

2

)
(I – 37)

instead of the usual expression:

GJj1j′1
= (−)j1−

1
2

√
(2j1 + 1)(2j′1 + 1)(2l1 + 1)(2l′1 + 1)

( l1 l′1 J

0 0 0

){ l1 l′1 J

j′1 j1
1
2

}
(I – 38)
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and when the matrix is non diagonal, the geometry is:

(−)l1+1
√

(2j1 + 1)(2j′1 + 1)
( j′1 J j1

− 1
2 1 − 1

2

)
= αJj1j′1

GJj1j′1
(I – 39)

Recurrence relations between Clebsh-Gordon coefficients gives:

αJj1j′1
= (−)l1+j1− 1

2
(j1 + 1

2 ) + (−)j1+j′1+J(j′1 + 1
2 )√

J(J + 1)
(I – 40)

which can be expressed with the eigenvalue γ of ~l.~σ as follows:

αJj1j′1
=


γ1 − γ′1√
J(J + 1)

, for a natural parity

γ1 + γ′1 + 2√
J(J + 1)

, for an unnatural parity
(I – 41)

or with the quantum number κ of Dirac equation because κ = γ + 1.
The coefficient GJj1j′1 is given by the summed formula which holds for 3-j coefficients of

which the magnetic quantum numbers are zeros:

GJjj′ = (−)In( J+j′−j+2
2 ) g(j + j′ + J + 1)

g(J + j − j′)g(J + j′ − j)g(j + j′ − J)
(I – 42)

where

g(n) =

√
n!
n!!

=


√

2× 4× . . .× (n− 1)
3× 5× . . .× n

, when n is odd√
2× 4× . . .× n

3× 5× . . .× (n− 1)
, when n is even

(I – 43)

1.3.3. – PARITY OF THE PARTICLE-HOLE MATRIX ELEMENT

With the elementary matrices, the sum on the helicities of one particle involves two terms
and the geometrical coefficient is:

1
2

(−)j1−λ1 [1 + η(−)l1+l′1+J ]
√

(2j1 + 1)(2j′1 + 1)
( j′1 j j1

λ′1 λ1 − λ′1 − λ1

)
(I – 44)

where η is the symmetry of the matrix.
Therefore, there are two kind of particle-hole matrix elements

the ”natural parity” matrix elements for which l1 + l′1 + J is even. All the contri-
bution of the interaction comes from its even part:

AJj1j
′
1 = GJj1j′1

∫
[aJ(1, 2) + αJj1j′1

b′J(2, 1)]φ?l′1j′1(r1)φl1j1(r1)r2
1dr1

BJj1j
′
1 = GJj1j′1

∫
[bJ(1, 2) + αJj1j′1

cJ(1, 2)]φ?l′1j′1(r1)φl1j1(r1)r2
1dr1

(I – 45)
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the ”unnatural parity” matrix elements for which l1 + l′1 + J is odd. All the
contribution of the interaction comes from its odd part:

CJj1j
′
1 = GJj1j′1

∫
[dJ(1, 2) + αJj1j′1

e′J(2, 1)]φ?l′1j′1(r1)φl1j1(r1)r2
1dr1

DJj1j
′
1 = GJj1j′1

∫
[eJ(1, 2) + αJj1j′1

fJ(1, 2)]φ?l′1j′1(r1)φl1j1(r1)r2
1dr1

(I – 46)

Here we used the usual wave functions. GJjj′ and αJjj′ are the geometrical coefficients given
above.

The matrix element is:

fJj′1j′2j1j2
= (−)j

′
2−j2GJj2j′2

∫ [(A
C

)
+ αJj2j′2

(
B

D

)]
φ?l′2j′2

(r2)φl2j2(r2)r2
2dr2 (I – 47)

where A and B are used for the natural parity case and C and D are used for the unnatural
parity case.

1.4. – SPIN-ORBIT INTERACTION

The relative spin orbit interaction introduces more form factors in the computation
of the particle-hole matrix elements. Nevertheless, it can be also obtained in the same formalism.
For the relative spin-orbit interaction, we used:

V (|~r1 − ~r2|) (2~L.~S) = V (|~r1 − ~r2|)
[
(~r1 − ~r2)×

~∇1 − ~∇2

i
.(~σ1 + ~σ2)

]
= V (|~r1 − ~r2|){~L1 + ~L2 + i~r1 × ~r2

( 1
r2

d

dr2
− 1
r1

d

dr1

)
+

1
r2
2

~r1 × (~r2 × ~L2) +
1
r2
1

~r2 × (~r1 × ~L1)}(~σ1 + ~σ2)

(I – 48)

There is a factor 4 between these results and the usual notations ( a factor 2 in the
definition and a factor 2 in the transformation to absolute coordinates.)

1.4.1. – MULTIPOLES OF THE SPIN-ORBIT INTERACTION

The expression of the multipoles have been given in [4] J. RAYNAL, Symposium sur les
Mécanismes de Réactions Nucléaires et phénoménes de Polarisation Université Laval, Québec,
(1969).

For the even part, the multipoles invariant for time reversal are:

aJ(1, 2) = −2VJ −
1
2

(r1

r2
+
r2

r1

){J(J − 1)
2J + 1

VJ−1 −
(J + 1)(J + 2)

2J + 1
VJ+1

}
+
J(J + 1)
2(2J + 1)

{r1

r2

(
αJj2j′2

)2

+
r2

r1

(
αJj1j′1

)2}(
VJ−1 − VJ+1

)
cJ(1, 2) = VJ −

1
2(2J + 1)

(r1

r2
+
r2

r1

){
(J + 1)VJ−1 + JVJ+1

} (I – 49)
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and for the odd part, the multipoles are:

dJ(1, 2) = − J(J + 1)
2(2J + 1)

{
2−

(
αJj1j′1

)2

−
(
αJj2j′2

)2}
(VJ−1 − VJ+1)

eJ(1, 2) = −
√
J(J + 1

2(2J + 1)

[{
(J + 2)VJ−1 − (2J + 1)

r2

r1
VJ + (J − 1)VJ+1

}
−
(
αJj1j′1

)2{
(J + 1)VJ−1 − (2J + 1)

r2

r1
VJ + JVJ+1

}]
fJ(1, 2) = − 1

2J + 1

{
(J + 1)VJ−1 + JVJ+1

}
+

1
2
(r1

r2
+
r2

r1

)
VJ

(I – 50)

In the even part, the multipole b is the sum of a derivative term:

bJ1 (1, 2) =

√
J(J + 1)
2J + 1

[(
VJ−1 − VJ+1

)(
r2

d

dr1
− r1

d

dr2

)
+

1
2
(r2

r1
− r1

r2

)(
c1VJ−1 + c2VJ+1

)]
(I – 51)

(where c1 = J + 1 and c2 = J , but where c1 = J − 1 and c2 = J + 2 if the functions are
multiplied by r as usual)
and a term odd for the permutation of j1 and j2 with j′1 and j′2:

bJ2 (1, 2) =
(j1 + 1

2 )2 − (j′1 + 1
2 )2

2
√
J(J + 1)

[
− VJ +

r2

r1

{
J+1
2J+1VJ−1 + J

2J+1VJ+1

}]
+

(j2 + 1
2 )− (−)j2+j′2+J(j′2 + 1

2 )
2αJj2j′2

[
VJ −

r1

r2

{
J

2J+1VJ−1 + J+1
2J+1VJ+1

}] (I – 52)

the departure from the previous geometry appears by this terms and the presence of α2 in the
”natural parity” two-body form factor aJ and in the ”unnatural parity” ones cJ and eJ .

There are five one body form factors for a natural parity excitation:

FLS = A(r) +B(r)
(γi − γf )√
J(J + 1)

+A1(r)
(γi − γf )2

J(J + 1)
+B2(r)(γi + γf + 2)

+A2(r)
(γi − γf )(γi + γf + 2)

J(J + 1)
+
{
A3(r) +B3(r)

(γi − γf )√
J(J + 1)

} d

dr

(I – 53)

an only three for unnatural parity excitation:

FLS(r) = C(r) +D(r)
(γi + γf + 2)√

J(J + 1)
+ C1(r)

(γi + γf + 2)2

J(J + 1)
(I – 54)

1.4.2. – EXPANSION FOR SMALL RANGES

In fact, the two body interaction is separated into four parts which are respectively
V(S=0,T=0), V(S=1,T=0), V(S=0,T=1) and V(S=1,T=1). The tensor and the spin orbit interactions
are pure S = 1. For a central interaction:

V(S=0) = V
1− ~σ1.~σ2

4
, V(S=1) = V

3 + ~σ1.~σ2

4
(I – 55)

for identical particles, VT=0 do not contribute
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for non identical particles, V(T=0) and V(T=1) are divided by 2 and the sign of
V(T=0) is changed in the exchange term.

In the zero range limit, all the multipoles VJ(r1, r2) are replaced by δ(r1−r2)/r2
1. The

spin-orbit and the tensor interactions vanish. For the central interaction, the exchange term,
which includes sums of products of a 6j coefficient and (−)j

′
2−j1GJj2j′1

GJj1j′2
is equal or opposite

to the direct term. In fact:

V(S=0,T=0) = 0, V(S=1,T=1) = 0 (I – 56)

An expansion of the interaction with respect to its range can be performed:

V (r) =
∞∑
n=0

Cn δ
(2n)(r) (I – 57)

where Cn can be defined from the Fourier transform:

W (q) =
∫
eiqrV (r)dr =

∞∑
n=0

Cn

∫
eiqrδ(2n)(r)dr =

∞∑
n=0

(−)nCnq2n (I – 58)

Using the Fourier transform of the δ function, we obtain:

δ(2n)(r)⇒ δ(r1 − r2)
{ 1
r1

d2

dr2
1

r1 −
J(J + 1)

r2
1

}n
fj′1(r1)fj1(r1) (I – 59)

where the derivation acts on all the functions of r1.

1.4.3. – ZERO-RANGE LIMIT OF THE INTERACTIONS

An interaction of range µ and intensity V corresponds to a zero-range interaction of in-
tensity V µ3. When the zero-range interaction does not exist, the related zero-range limit
interaction has an intensity V µ5.

This approximation can be applied to the one body form factor of the ~L.~S interaction. Let
us consider a particle-hole excitation with radial functions fp(r) and fh(r). With the transition
form factor:

VJ(r) = GJjpjh fp(r) fh(r) (I – 60)

the zero-range limit is:

VLS(r) =
[
J(J + 1)

(
(αJjpjh)2 + (αJjijf )2 − 2

)
− 1
]VJ(r)

r2

+
[
1− (−)lp+lh+JαJjpjhα

J
jijj

][
− (γi + γf + 1)

VJ(r)
r2

+ (γp + γh − γi − γf )
1
r

{ d
dr
VJ(r)

}]
+
[
1 + (−)lp+lh+J

][
(γi + γp + 1)

VJ(r)
r2

+ (γh − γp − γi + γf )
(VJ(r)

r

d

dr
+GJjpjh

1
r
fp(r)

{ d
dr
fh(r)

})]
(I – 61)

which includes natural parity excitations for which
[
1 + (−)lp+lh+J

]
= 2 and unnatural parity

excitations for which
[
1 + (−)lp+lh+J

]
= 0. This expression is invariant under antisym-

metrisation: direct and exchange terms add for T = 1 and cancel for T = 0.
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This is easily understood in relative coordinates. For a relative angular momentum L, the
symmetrised states are those with L+ S + T odd. The zero-range implies L = 0 and the next
term is L = 1. As the spin orbit is S = 1, its zero-range limit must be T = 1 because it is for
L = 1.

1.4.4. – COMPARISON WITH MACROSCOPIC MODELS

When the excited state is collective, there are many contributions with different values of
γp and γh which must cancel out. VJ(r) is the transition form factor. Using:

∑
GJjpjh

1
r
fp(r)

{ d
dr
fh(r)

}
=

1
2r
{ d
dr
VJ(r)

}
,

(
αJjpjh

)2 =
1
2

(I – 62)

we get for a natural parity state, taking the Hermitian part:

VLS(r) =
[
(γi − γf )(γi − γf + 1)− J(J + 1)

]VJ(r)
r2

− 2γi
1
r

{1
r

d

dr
VJ(r)

}
+ 2(γf − γi)

VJ(r)
r

d

dr
(I – 63)

to be compared to the macroscopic result:

~∇
{
VJ(r)YMJ (r̂)

}
×
~∇
i
.~σ =

[1
r

{ d
dr
VJ(r)

}
γi +

VJ(r)
r

(γi− γf )
d

dr
+
VJ(r)
2r2

{
J(J + 1)− (γi− γf )(γi− γf + 1)

}]
(I – 64)

and for an unnatural parity state:

VLS(r) =
[
(γi + γf + 2)(γi + γf + 1)− J(J + 1)

]VJ(r)
r2

− (γi + γf )
1
r

{1
r

d

dr
VJ(r)

}
(I – 65)

In the peculiar case J = 0 and natural parity, summation over all the nucleons must lead
to the optical model. The interaction is:

VLS(r) = 2γp
V0(r)λ
r2

+ 2(γp − γi)
1
r

{ d
dr
V0(r)

}
(I – 66)

where the factors γp disappear after summation on two complete shells with the same angular
momentum l and the same radial functions.

1.5. – APPLICATION TO NUCLEAR REACTIONS AND CODE DWBA70

For an incoming particle in the direction ~ki with the helicity σi on a nucleus without spin described
by ΨIi and an outcoming particle in the direction ~kf with an helicity σf , the residual nucleus having
the helicity µf described by a particle jp and a hole jh, ΨIf

µf the reaction is described by the helicity
amplitudes:

fσfµf ;σi(~ki,~kf ) = − m

2πh̄2

√
vf
vi

< Ξ(−)
σf

(~kf , ~r)Ψ
If
µf |V |Ξ(+)

σi (~kf , ~r)ΨIi > (I – 67)

where vi and vf are the velocities in the initial and the final state. The normalisation has been chosen
in such a way that:

dσ

dΩ
(~ki,~kf ) =

1
2

∑
σi,σf ,µf

|fσfµf ;σi(~ki,~kf )|2 (I – 68)
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for an unpolarised beam. The polarisation of the outcoming particle and of the residual nucleus, and
their correlations are described by the matrix:

Fσfµf ;σ′
f
µ′
f

=
[
2
dσ

dΩ
(~ki,~kf )

]−1∑
σi

fσfµf ;σi(~ki,~kf )f?σ′
f
µ′
f
;σi

(~ki,~kf ) (I – 69)

1.5.1. – HELICITY AMPLITUDES IN TERMS OF THE INTEGRALS

With the axis of quantisation along ~kf and θ the angle between ~ki and ~kf :

fσfµf ;σi(θ) = −m
h̄2

√
vf
vi

1
kfki

∑
ji,jf ,mi

(−)ji−σi
√

(2ji + 1)(2jf + 1)(2If + 1)

×
( ji] jf If

mi −σf µf

)
r(ji)
mi,σi(θ) f

If
jp(jfσf ),jh(jiσi)

(I – 70)

where the fJ are defined as between bound-states as far as the first particle is concerned. Noting
the integrals between the usual radial wave functions by:

F±,± =
∫
F (2)Ξlf=jf± 1

2
Ξli=ji± 1

2
(I – 71)

the following expressions are obtained for natural parity excitations:

fJjp(jf
1
2 );jh(ji± 1

2 ) =iji−jf+1GJj1j′1

{
(A+ αJj1j′1

B)+,− ∓ (A− αJj1j′1B)−,+
}

if ji + jf + J is even

fJjp(jf
1
2 );jh(ji± 1

2 ) =iji−jfGJj1j′1

{
(A− αJj1j′1B)−,− ± (A+ αJj1j′1

B)+,+

}
if ji + jf + J is odd

(I – 72)

and for unnatural parity excitations, A and B are replaced by C and D and the conditions on
ji + jf + J exchanged.

For the exchange, the same calculation has to be done for all the transfer of J possible,
with the initial distorted wave instead of the hole function. For each value of J , the matrix
elements are natural parity or unnatural parity according to the angular momentum of the
incoming particle.

This formalism has been used by [5] R. SCHAEFFER, Un modéle microscopique
pour la diffusion inelastique de protons a basse et moyenne energie, Thesis, Orsay, (1969).for
the inelastic scattering of protons exciting low lying collective states of 40Ca and
some other nuclei with a real static interaction. It has also be used for charge
exchange reaction.

1.5.2. – CODE DWBA70

This code [6] R. SCHAEFFER and J. RAYNAL, DWBA70 (unpublished). and Ref[2]
takes into account particle-hole excitations with many configurations. The interaction is real,
density independent and must have Yukawa form-factors. A superposition of Yukawa form
factors can be used. The interactions are the coulomb interaction, a scalar, (~σ1.~σ2), tensor and
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(~L.~S) for identical and different particles. Central and (~L.~S) interactions can have zero range
limit.

In fact, in these calculations we use only Yukawa form factors because its multipole expan-
sion:

exp(−λ|~r1 − ~r2|)
λ|r1 − r2|

=
∞∑
L=0

(2L+ 1) i jL(iλr<) h(+)
L (iλr>) PL(cos θ) (I – 73)

is such that the double integral over r1 and r2 reduces to three single integrals.
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2. – DWBA82

Even increased with the possibility to sum over more than one J-transfer, the code DWBA70 had to be
modified for the use of a complex G-matrix instead of a real interaction. The code was rewritten with the
same structure used in ECIS, which avoid any internal limitations.

2.1. – PRESENTATION OF THE INTERACTION

Beside the possibility to use macroscopic transition form factors, the interaction is introduced in
a more conventional way, using S and T notations. The projectors on the value of S are:

PS=0 =
1− (~σ1.~σ2)

4
, PS=1 =

3 + (~σ1.~σ2)
4

(II – 1)

The finite range interactions are central, tensor and spin-orbit:

V(S=0,T=0), V(S=0,T=1), V(S=1,T=0), V(S=1,T=1),

V LS(S=1,T=0), V LS(S=1,T=1), V T(S=1,T=0), V T(S=1,T=1)

(II – 2)

The zero range interactions are:

V(S=0,T=1), V(S=1,T=0), V LS(S=1,T=1) (II – 3)

and zero-range limits of the scalar interaction which are identical to some part of the
Skyrme force and zero range limit of the tensor interaction:

V Skyrme(S=0,T=0), V Skyrme(S=0,T=1), V Skyrme(S=1,T=0), V Skyrme(S=1,T=1),

V T,0−limit(S=1,T=0), V T,0−limit(S=1,T=1)

(II – 4)

All these interactions can be complex and density dependent. The density dependence can be:

VJ(r1, r2)⇒ VJ(r1, r2)
√
g(r1)g(r2) (II – 5)

or
VJ(r1, r2)⇒ VJ(r1, r2)

1
2
[
g(r1) + g(r2)

]
(II – 6)

2.2. – THE SKYRME INTERACTION

The Skyrme force introduced by [7] T. H. R. SKYRME, Phil. Mag. 1, 1043 (1956); Nucl. Phys.
9, 615 (1959). is:

V (~r1 − ~r2) = t0(1 + x0P
σ)δ(~r1 − ~r2) +

t1
2
[
δ(~r1 − ~r2)~k2 + ~k′

2
δ(~r1 − ~r2)

]
+

+ t2~k
′.δ(~r1 − ~r2)~k + iw0(σ1 + σ2)~k′ × δ(~r1 − ~r2)~k

(II – 7)
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is a zero-range limit interaction; consequently, as shown by [8] J. P. BLAIZOT and J. RAYNAL,
Lettere al Nuovo Cim. 12, 508 (1975). its particle-hole matrix elements are products of quite simple
geometrical coefficients with zero range radial integrals involving derivatives of the radial functions.
The first term is the zero range scalar interaction and the last term is the zero range limit of the spin
orbit interaction as they were used in DWBA70. Notations for Skyrme force are usually 4π those of
DWBA70.

The t1 term of the Skyrme force includes a double derivative on the wave function in relative
coordinates. So, it acts in relative L = 0 state and is the next term to the zero range scalar interaction:

t1 ⇒ V Skyrme(S=0,T=1) + V Skyrme(S=1,T=0) (II – 8)

The t2 term of the Skyrme force includes a single derivative on the wave function in relative
coordinates on the right and on the left. So, it acts in relative L = 1 and:

t2 ⇒ V Skyrme(S=0,T=0) + V Skyrme(S=1,T=1) (II – 9)

Similar expressions are obtained for the zero range limit of the tensor interaction. There are two
parts: the tensor interaction in relative L = 1 state, which is T = 1 and the tensor interaction between
relative L = 0 and relative L = 2 state, which is T = 0:

V T ⇒ V T,0−limit(S=1,T=0) + V T,0−limit(S=1,T=1) (II – 10)

One has to take into account that this last interaction is the limit of 1
r
d4

dr4 r acting in
relative coordinates.
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3. – DWBA90

This new code has been developed to include ~L2 and (~L.~S)2 terms in the two-body interaction.
The interaction used in such calculation is obtained by a χ2 fit of the phase shifts of nucleon nucleon

potentials like those of Paris or Bonn. Introduction of other interaction like (~L.~S)2 and ~L2 or Q12 =
(~L.~S)2 − ~L2 reduces largely the χ2. For this reason, it appeared useful to add such interactions in the code.

3.1. – COMPUTATION OF THE MULTIPOLES OF ~L2 AND (~L.~S)2 INTERACTIONS

The number of two-body and one-body form factors is quite large ( twenty one body
form factors for natural parity, eighteen for unnatural parity ) and leads to some drastic
changes in the notations.

3.1.1. – NEW NOTATIONS

Instead of αJjj′ , we define now:

αJjj′ = (γ + 1)− (−)l+l
′+J(γ′ + 1)

βJjj′ = (γ + 1) + (−)l+l
′+J(γ′ + 1)

(III – 1)

which is the old definition of αJjj′ multiplied by
√
J(J + 1), βJjj′ being the coefficient of opposite

parity, as it appears already in some form factors of the spin orbit interaction.
We define the following eleven coefficients Xi for particle 1 and the following eleven coef-

ficients Yi for particle 2:
X1 = αJj1j′1

Y1 = αJj2j′2
X2 = (αJj1j′1)2 Y2 = (αJj2j′2)2

X3 = αJj1j′1
βJj1j′1

Y3 = αJj2j′2
βJj2j′2

X4 = βJj1j′1
Y4 = βJj2j′2

X5 =
[
(αJj1j′1)2 − 1

]
βJj1j′1

Y5 =
[
(αJj2j′2)2 − 1

]
βJj2j′2

X6 = (βJj1j′1)2 Y6 = (βJj2j′2)2

X7 = (αJj1j′1)3 Y7 = (αJj2j′2)3

X8 = αJj1j′1
(βJj1j′1)2 Y8 = αJj2j′2

(βJj2j′2)2

X9 =
[
(αJj1j′1)2 − 1

]
(βJj1j′1)2 Y9 =

[
(αJj2j′2)2 − 1

]
(βJj2j′2)2

X10 = αJj1j′1

[
(αJj1j′1)2 − 1

]
(βJj1j′1)2 Y10 = αJj2j′2

[
(αJj2j′2)2 − 1

]
(βJj2j′2)2

X11 = αJj1j′1

[
(αJj1j′1)2 − 1

]
βJj1j′1

Y11 = αJj2j′2

[
(αJj2j′2)2 − 1

]
βJj2j′2

Already in DWBA82, the zero range limit interactions involved for natural parity matrix
elements

1) two second derivative form factors, with constant and X1

2) five first derivative form factors, with constant and X1 to X4

3) nine form factors without derivatives, with constant and X1 to X8
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3.1.2. – STRUCTURE OF THE MULTIPOLES

With these notations, the spin-orbit one body form factor reads:

FLS = A(r) +B(r)Y1 +A1(r)Y2 +A2(r)Y3 +B2(r)Y4 +
{
A3(r) +B3(r)Y1

} d

dr
(III – 2)

for a natural parity excitation and:

FLS(r) = C(r) +D(r)Y1 + C1(r)Y2 (III – 3)

for an unnatural parity excitation. Note that there is a difference of a factor
√
J(J + 1) with

the previous definition for the form factors B(r), B3(r) and D(r) and a factor J(J + 1) for
A1(r), A2(r) and C1(r).

The multipoles of an interaction for the computation of a particle hole matrix element fJ

involve terms:

UL,int = rm1 r
n
2VL(r1, r2)

dp+q

drp1dr
q
2

(III – 4)

with m + n− p− q = 0 except for the tensor interaction in which m + n = 2, p = q = 0. The
parity of such term for the change r1 → −r1 is:

η = (−)m−p+L = (−)n−q+L

For a natural parity matrix element, η = (−)J and for an unnatural parity matrix element,
η = (−)J+1. So:

(−)m−p = (−)n−q =
{

(−)J−L, for a natural parity
(−)J−L+1, for an unnatural parity

(III – 5)

The total geometrical coefficient for this term which exists only if L ≥ 0 is:

(−)j
′
2−j2GJj2j′2

GJj1j′1

PL,int(J, αJj1j′1 , β
J
j1j′1

, αJj2j′2
, βJj2j′2

)

QL,int(J)
(III – 6)

where PL,int and QL,int are polynomials.
For all the interactions which we have in mind:

1) The denominator polynomial QL,int(J) is a product of terms
a) like (2J + 1), (2J − 1), (2J + 3), (2J − 3) and so on,
b) but also (J + 2), (J + 1), J and (J − 1) ( these two last terms can give trouble when

J = 0 or J = 1 if they appear for L ≥ J or L ≥ J − 1 respectively ).
2) The numerator polynomial PL,int(J, αJj1j′1 , β

J
j1j′1

, αJj2j′2
, βJj2j′2

) is of any degree in J and up

to the third degree in (αJj1j′1 , βJj1j′1), (αJj2j′2 and βJj2j′2) separately. It has been found that
this dependence can be rewritten in terms of the 11 Xi and 11 Yi only.
The Xi and Yi has been chosen such that the terms with a dangerous denomi-

nator does not exist.
1) For J = 0, α = 0, β 6= 0, so X4 = −X5, X6 = −X9 and all the other Xi vanish ( same

behaviour for the Yi).
2) For J = 1, α = ±1, β 6= 0 or α 6= 0, β = 0, so X5 = X9 = X10 = X11 = 0 ( same behaviour

for the Yi).
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3.1.3. – COMPUTATION OF INTERACTIONS FROM SIMPLER ONES

We want to compute the particle hole matrix elements of the interaction:

V (|~r1 − ~r2|)Vx(1, 2)Vy(1, 2) (III – 7)

where Vx(1, 2) and Vy(1, 2) are two interactions of which we know:

gJj′1j′2,j1j2
=

∑
m′1,m

′
2,m1,m2

(−)j1−m1+j′2−m
′
2 < j′1 j1 m

′
1 −m1|J M >

× < j2 j
′
2 m2 −m′2|J M >< j′1m

′
1j
′
2m
′
2|V (|~r1 − ~r2|)Vx(1, 2)|j1m1j2m2 >

(III – 8)

with the radial dependence V (|~r1 − ~r2|) and

hJj′1j′2,j1j2
=

∑
m′1,m

′
2,m1,m2

(−)j1−m1+j′2−m
′
2 < j′1 j1 m

′
1 −m1|J M >

× < j2 j
′
2 m2 −m′2|J M >< j′1m

′
1j
′
2m
′
2|Vy(1, 2)|j1m1j2m2 >

(III – 9)

where there is no radial dependence, that is particle hole matrix elements limited to L = 0.
Therefore, for given |j1m1 > and |j2m2 >, the possible |j′1m′1 > and |j′2m′2 > are very
limited.

Writing:

< j′1m
′
1j
′
2m
′
2|V (|~r1 − ~r2|)Vx(1, 2)Vy(1, 2)|j1m1j2m2 >=∑

j′′1 ,m
′′
1 ,j
′′
2 ,m

′′
2

< j′1m
′
1j
′
2m
′
2|V (|~r1 − ~r2|)Vx(1, 2)|j′′1m′′1j′′2m′′2 >

× < j′′1m
′′
1j
′′
2m
′′
2 |Vy(1, 2)|j1m1j2m2 >

(III – 10)

we get:

fJj′1j′2,j1j2
=

∑
J′,J ′′,j′′1 ,j

′′
2

(−)j2+j′2+j1+j′1+J+J′+J′′(2J ′ + 1)(2J ′′ + 1)

×
{ J ′′ J ′ J

j′1 j1 j′′1

}{J ′′ J ′ J

j′2 j2 j′′2

}
gJ
′

j′1j
′
2,j
′′
1 j
′′
2
hJ
′′

j′′1 j
′′
2 ,j1j2

(III – 11)

3.1.4. – COMPUTATION OF ~L2 AND (~L.~S)2

With the matrix elements of (~L.~σ1) and (~L.~σ2), one obtain:

~L2 = (~L.~σ1)2 − (~L.~σ1)

(~L.~S)2 =
1
4

[
(~L.~σ1)(~L.~σ2) + (~L.~σ2)(~L.~σ1)

]
+

1
2

[
~L2 − (~L.~S)

] (III – 12)
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The matrix element of (~L.~σ1) has been divided in four parts:

1) i
(
~r1 × ~r2

{ 1
r2

d

dr1
− 1
r1

d

dr2

})
.~σ1

2)
1
r2
2

(
~r1 ×

{
~r2 × ~L2

})
.~σ1

3)
1
r2
1

(
~r2 ×

{
~r1 × ~L1

})
.~σ1

4)
(
~L1 + ~L2

)
.~σ1

(III – 13)

and the polynomials Q(J) and P (J, . . .) obtained for each product. This job was done numeri-
cally for each term

1) by finding which is the polynomial Q(J) which gives integer values of P (J, . . .)
2) by finding by difference on J the polynomials in α and β which multiply each power

of J in P (J, . . .)
3) by identifying these polynomials in α and β.

A similar operation has to be done in order to separate ~L2
(S=0,T=0), ~L

2
(S=0,T=1), ~L

2
(S=1,T=0)

and ~L2
(S=1,T=1) to obtain ~L2 (~σ1.~σ2) with ~L2 and (~σ1.~σ2).

Three results have been obtained for natural parity matrix elements and three others for
unnatural parity matrix elements. They are those of ~L2, ~L2 (~σ1.~σ2) and (~L.~σ1)(~L.~σ2).

3.2. – MULTIPOLES OF ~L2 AND (~L.~S)2 INTERACTIONS

Among six expressions needed, the ~L2 for unnatural parity is the only one manageable to be
printed in one piece:

~L2 =
J(J + 1)

8

(
VJ−1 + VJ+1 − (

r1

r2
+
r2

r1
)VJ
)(

1 +
X1 −X2

J(J + 1)

)(
1 +

Y1 − Y2

J(J + 1)

)
(III – 14)

3.2.1. – NUMBER OF MULTIPOLES AND SYMMETRIES

All the others five interactions are of the form∑
L

CL1 VL

(
r2
1

d2

dr2
2

− 2r1r2
d2

dr1dr2
+ r2

2

d2

dr2
1

)
+
∑
L

CL2 VL
r2
1

r2

d

dr2
+
∑
L

CL3 VL
r2
2

r1

d

dr1
+
∑
L′

CL
′

4 VL′r1
d

dr2

+
∑
L

DL
2 VLr1

d

dr1
+
∑
L

DL
3 VLr2

d

dr2
+
∑
L′

DL′

4 VL′r2
d

dr1

+
∑
L

CL5
r2
1

r2
2

VL +
∑
L

CL6 VL +
∑
L

CL7
r2
2

r2
1

VL +
∑
L′

CL
′

8

r1

r2
VL′ +

∑
L′

CL
′

9

r2

r1
VL′

(III – 15)

with
DL

2 = −CL2 − CL1 , DL
3 = −CL3 − CL1 , DL′

4 = −CL
′

4 (III – 16)
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There are relations between these multipoles:
1) due to the absence of these interactions in the relative S–state and the equality of the

multipoles for a zero–range interaction, the following sums vanish:∑
L

CL1 =
∑
L

CL2 − CL3 =
∑
L′

CL
′

4 =
∑
L

CL5 + CL6 + CL7 +
∑
L′

CL
′

8 + CL
′

9 = 0 (III – 17)

2) there is a kind of ”mirror” symmetry (invariance of geometrical coefficients when any
quantum number j → −j− 1 [9] A. P. YUTSIS and A. A. BANDZAITIS, The Theory of
Angular Momenta in Quantum Mechanics, Vilnius, 1965) which is a relation between the
multipole for L = J + n and the multipole for L = J − n:

CJ+n
i = fn,i(J,X, Y ) CJ−ni = −fn,i(−J − 1, X, Y ) (III – 18)

3) and the symmetry between the two particles by permutation of the X’s and the Y ’s:

CL1 → CL1 , CL2 → CL3 , CL
′

4 → −CL
′

4 , CL5 → CL7 , CL6 → CL6 , CL
′

8 → CL
′

9

(III – 19)
The sum on L or L′ involves the non negative values:

L = J − 2, J , J + 2, L′ = J − 1, J + 1

for the three interactions and natural parity

L = J − 1, J + 1, L′ = J − 2, J , J + 2

for (~L.~S)2 and unnatural parity

L = J − 3, J − 1, J + 1, J + 3, L′ = J − 2, J , J + 2

for ~L2(~σ1.~σ2) and unnatural parity.

We shall give the list of the multipoles C1, C2, C4, C5, C6 and C8, including those which
can be obtained by the symmetry J → −J−1. The other multipoles can be obtain by exchange
of the X’s with the Y ’s. For J = 0, the denominators J(J + 1) are replaced by 1; in this case,
all the X’s vanish except for X4 = −X5 and X6 = −X9 and the same happens for the Y ’s.
Sometimes a different expression is needed to avoid division by J = 0.

3.2.2. – EVEN PARITY MULTIPOLE EXPANSIONS

Let us give in these notations the multipoles of the other interactions:

1) the central interaction has only one multipole:

CJ6 = 1 (III – 20)

2) the (~σ1.~σ2) has only one multipole:

CJ6 = − X1Y1

J(J + 1)
(III – 21)
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3) the spin orbit interaction has only:

CJ−1
4 = −CJ+1

4 =
1

4(2J + 1)
[X1 − Y1]

CJ6 = −1
8

[
4−X4 − Y4 +

(X3 −X1)Y1 + (Y3 − Y1)X1

J(J + 1)

]
CJ−1

8 = − 1
8(2J + 1)

[
(J − 1)(J +X1 − Y1)−X2 + JX4 +

1
J

(X1 −X3)Y1

]
CJ+1

8 =
1

8(2J + 1)

[
(J + 2)(J + 1−X1 + Y1)−X2 − (J + 1)X4 −

1
J + 1

(X1 −X3)Y1

]
(III – 22)

4) the tensor interaction has different multipoles which we can write:

CJ = (r2
1 + r2

2)
X1Y1

J(J + 1)
CJ−1 = −r1r2

(2J + 3)X1Y1

J(J + 1)(2J + 1)
CJ+1 = −r1r2

(2J − 1)X1Y1

J(J + 1)(2J + 1)
(III – 23)

3.2.2.1. – EVEN PARITY MULTIPOLE EXPANSION OF ~L2

CJ−2
1 =

J(J − 1)
4(2J − 1)(2J + 1)

CJ1 = − J2 + J − 1
2(2J − 1)(2J + 3)

CJ+2
1 =

(J + 1)(J + 2)
4(2J + 1)(2J + 3)

(III – 24)

CJ−2
2 =

J − 1
4(2J − 1)(2J + 1)

[
J(J − 2)− Y1 + Y3

]
CJ2 =− 1

4(2J − 1)(2J + 3)

[
J(J + 1) + Y1 − Y3

]
CJ+2

2 =− J + 2
4(2J + 1)(2J + 3)

[
(J + 1)(J + 3)− Y1 + Y3

]
CJ−1

4 =− CJ+1
4 = − 1

4(2J + 1)
[
X1 −X3 − Y1 + Y3

]
(III – 25)

CJ−2
5 =

1
16(2J − 1)(2J + 1)

[
(J − 1){(J − 3)[J(J − 2)− 2Y1 + 2Y3]− Y2 + 2Y4 − Y6} − 2Y5 + Y9

]
CJ5 =− 1

8(2J − 1)(2J + 3)

[
(J − 1)(J + 2){J(J + 1) + 2Y1 − 2Y3} − 2(J2 + J − 1)(Y2 − 2Y4 + Y6)

− 2Y5 + Y9

]
CJ+2

5 =
1

16(2J + 1)(2J + 3)

[
(J + 2){(J + 4)[(J + 1)(J + 3)− 2Y1 + 2Y3] + Y2 − 2Y4 + Y6} − 2Y5 + Y9

]
(III – 26)
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CJ−2
6 =− J − 1

8J(2J − 1)(2J + 1)
[
J(J − 1)−X1 +X3

][
J(J − 1)− Y1 + Y3

]
CJ6 =

1
16

[
X2 − 2X4 +X6 + Y2 − 2Y4 + Y6 −

2
(2J − 1)(2J + 3)

{6J4 + 12J3 + 23J2 + 17J − 16

− 2(J2 + J − 1)(X1 −X3 + Y1 − Y3)} − 6(X1 −X3)(Y1 − Y3)
J(J + 1)(2J − 1)(2J + 3)

(2J2 + 2J − 1)
]

CJ+2
6 =− J + 2

8(J + 1)(2J + 1)(2J + 3)
[
(J + 1)(J + 2)−X1 +X3

][
(J + 1)(J + 2)− Y1 + Y3

]
(III – 27)

CJ−1
8 =

1
8(2J + 1)

[
(J − 1){J(J + 1)−X1 +X3 + Y1 − Y3} − J(Y2 − 2Y4 + Y6)

+
1
J

(X1 −X3)(Y1 − Y3)
]

CJ+1
8 =

1
8(2J + 1)

[
(J + 2){J(J + 1)−X1 +X3 + Y1 − Y3} − (J + 1)(Y2 − 2Y4 + Y6)

+
1

J + 1
(X1 −X3)(Y1 − Y3)

] (III – 28)

For J = 0, the non vanishing values of the coefficients above are:

C0
1 =− C2

1 = −1
6

C2
2 = −1

2

C0
5 =− 2Y4 − Y6

24
C2

5 =
24− 2Y4 + Y6

48

C0
6 =− 32 + 6(X4 + Y4)− 3(X6 + Y6)

48
C2

6 = −1
3

C1
8 =

2Y4 − Y6

8

(III – 29)

without division by J = 0.

3.2.2.2. – EVEN PARITY MULTIPOLE EXPANSION OF (~L.~σ1)(~L.~σ2)

CJ−2
1 = − (J − 1)X1Y1

4J(2J − 1)(2J + 1)
CJ1 =

(2J2 + 2J − 3)X1Y1

4J(J + 1)(2J − 1)(2J + 3)
CJ+2

1 = − (J + 2)X1Y1

4(J + 1)(2J + 1)(2J + 3)
(III – 30)

CJ−2
2 =− X1

8J(2J − 1)(2J + 1)

[
(J − 1){(J − 2)(J + 2Y1) + (J − 1)Y4 − Y2}+ Y5

]
CJ2 =

X1

8(2J − 1)(2J + 3)

[
2J(J + 1)− 1

J(J + 1)
{2(J2 + J − 3)Y1 + (2J2 + 2J − 3)Y2 + 3(J2 + J − 1)Y4

− 3Y5}
]

CJ+2
2 =− X1

8(J + 1)(2J + 1)(2J + 3)

[
(J + 2){(J + 3)(J + 1− 2Y1)− (J + 2)Y4 − Y2} − Y5

]
CJ−1

4 =− CJ+1
4 = − 1

8(2J + 1)

[
3(X1 − Y1) +

1
J(J + 1)

{(J2 + J − 1)(X4Y1 −X1Y4) +X5Y1 −X1Y5}
]

(III – 31)
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CJ−2
5 =− X1

16J(2J − 1)(2J + 1)

[
(J − 1){(J − 3)[J(J − 2)− Y2 + (J − 1)Y4] + (J2 − 6J + 6)Y1

+ (J − 1)Y3 + Y8}+ (J − 3)Y5 − Y11

]
CJ5 =

X1

16(2J − 1)(2J + 3)

[
3(J − 1)(J + 2)− 2Y8 +

1
J(J + 1)

{(J − 1)(J + 2)[3Y2 − (2J2 + 2J − 3)Y4]

− (2J4 + 4J3 − J2 − 3J + 6)Y1 + 3(3J2 + 3J − 2)Y3 − 2(J2 + J + 3)Y5 − 3Y11}
]

CJ+2
5 =

X1

16(J + 1)(2J + 1)(2J + 3)

[
(J + 2){(J + 4)[(J + 1)(J + 3)− Y2 − (J + 2)Y4]− (J2 + 8J + 13)Y1

+ (J + 2)Y3 − Y8} − (J + 4)Y5 − Y11

]
(III – 32)

CJ−2
6 =

1
16(2J − 1)(2J + 1)

[
(J − 1){2J(J2 − J + 1) + (J − 1)(J − 2)(X1 + Y1)− (2J − 1)(X2

+ Y2) + (2J2 + 1)(X4 + Y4)} − (J + 1)(X5 + Y5) +
1
J
{(J − 1)

(
(J − 1)[(J − 1)(2X1Y1 +X4Y1

+X1Y4)−X2Y1 −X1Y2] + 2(J2 + J + 1)X4Y4 − (2J + 1)(X4Y2 +X2Y4) +X5Y1 +X1Y5

+ 2X2Y2

)
− (J + 2)(X5Y4 +X4Y5) +X5Y2 +X2Y5}+

2X5Y5

J(J − 1)

]
CJ6 =

1
16

[
X2 + Y2 +

1
J(J + 1)

{(3X3 −X8)Y1 +X1(3Y3 − Y8)} − 1
(2J − 1)(2J + 3)

{4(J4 + 2J3

− 8J2 − 9J + 6) + (7J2 + 7J − 6)(X1 + Y1) + 3(6J2 + 6J − 5)(X4 + Y4)− 3X5 − 3Y5

− 2(2J2 + 2J − 1)X1Y1 − (2J2 + 2J − 1)(X4Y1 +X1Y4)− (X2 + 2X5)Y1 −X1(Y2 + 2Y5)}

− 1
J(J + 1)(2J − 1)(2J + 3)

{2(2J2 + 2J − 3)X2Y2 − 6(2J4 + 4J3 − J2 − 3J + 2)X4Y4

+ 6(J − 1)(J + 2)(X5Y4 +X4Y5) + 3[(X4 +X5)Y2 +X2(Y4 + Y5)− 4X5Y5]}
]

CJ+2
6 =

1
16(2J + 1)(2J + 3)

[
(J + 2){2(J + 1)(J2 + 3J + 3)− (J + 2)(J + 3)(X1 + Y1)− (2J + 3)(X2

+ Y2)− (2J2 + 4J + 3)(X4 + Y4)}+ J(X5 + Y5) +
1

J + 1
{(J + 2)

(
(J + 2)[(J + 2)(2X1Y1 +X4Y1

+X1Y4) +X2Y1 +X1Y2] + 2(J2 + J + 1)X4Y4 + (2J + 1)(X4Y2 +X2Y4) +X5Y1 +X1Y5

+ 2X2Y2

)
− (J − 1)(X5Y4 +X4Y5)−X5Y2 −X2Y5}+

2X5Y5

(J + 1)(J + 2)

]
(III – 33)
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CJ−1
8 =

1
16(2J + 1)

[
(J − 1){(3J − 3X1 + 3Y1 − (2J + 1)X4}+ 3JY4 − 3Y2 +X5

+
3
J
X1Y1 −

1
J(J + 1)

{(J − 1)[(J2 + J + 1)(X4Y1 −X1Y4) +X5Y1 −X1Y5]

− (2J2 + 2J − 1)X4Y2 − (J2 − 5J − 5)X1Y3 + (2J3 + 3J2 − 2)X4Y4

− (J + 2)(X5Y4 +X4Y5)− (2J + 1)X1Y8 +X5Y2 +X1Y11} −
2X5Y5

J(J − 1)(J + 1)

]
CJ+1

8 =− 1
16(2J + 1)

[
(J + 2){(3J + 3 + 3X1 − 3Y1 − (2J + 1)X4} − 3(J + 1)Y4 − 3Y2 +X5

− 3
J + 1

X1Y1 +
1

J(J + 1)
{(J + 2)[(J2 + J + 1)(X4Y1 −X1Y4) +X5Y1 −X1Y5]

+ (2J2 + 2J − 1)X4Y2 + (J2 + 7J + 1)X1Y3 + (2J3 + 3J2 + 1)X4Y4

− (J − 1)(X5Y4 +X4Y5)− (2J + 1)X1Y8 −X5Y2 −X1Y11}+
2X5Y5

J(J + 1)(J + 2)

]

(III – 34)

For J = 0, the non vanishing values of the coefficients above are:

C0
6 =

(2−X4)(2− Y4)
8

C2
6 =

(2−X4)(2− Y4)
16

C1
8 = −3(2−X4)(2− Y4)

32
(III – 35)

with special formulae for C0
6 and C1

8 .

3.2.2.3. – EVEN PARITY MULTIPOLE EXPANSION OF ~L2(~σ1.~σ2)

CJ−2
1 = − (J − 1)X1Y1

4(J + 1)(2J − 1)(2J + 1)
CJ1 =

(J2 + J − 1)X1Y1

2J(J + 1)(2J − 1)(2J + 3)
CJ+2

1 = − (J + 2)X1Y1

4J(2J + 1)(2J + 3)
(III – 36)

CJ−2
2 =− (J − 1)X1

4J(J + 1)(2J − 1)(2J + 1)

[
J(J − 2)Y1 − Y2 + Y4 + Y5

]
CJ2 =

X1

4J(J + 1)(2J − 1)(2J + 3)

[
J(J + 1)Y1 + Y2 − Y4 − Y5

]
CJ+2

2 =
(J + 2)X1

4J(J + 1)(2J + 1)(2J + 3)

[
(J + 1)(J + 3)Y1 − Y2 + Y4 + Y5

]
CJ−1

4 =− CJ+1
4 = − 1

4J(J + 1)(2J + 1)

[
X1(Y2 − Y4 − Y5)− Y1(X2 −X4 −X5)

]
(III – 37)
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CJ−2
5 =− X1

16J(J + 1)(2J − 1)(2J + 1)

[
(J − 1){(J − 3)[J(J − 2)Y1 − 2Y2 + 2Y4 + 2Y5]

+ 2Y3 − Y7 − Y8}+ Y10 − 2Y11

]
CJ5 =

X1

8J(J + 1)(2J − 1)(2J + 3)

[
(J − 1)(J + 2){(J(J + 1)Y1 + 2Y2 − 2Y4 − 2Y5}

+ 2(J2 + J − 1)(2Y3 − Y7 − Y8) + Y10 − 2Y11

]
CJ+2

5 =− X1

16J(J + 1)(2J + 1)(2J + 3)

[
(J + 2){(J + 4)[(J + 1)(J + 3)Y1 − 2Y2 + 2Y4 + 2Y5]

− 2Y3 + Y7 + Y8}+ Y10 − 2Y11

]

(III – 38)

CJ−2
6 =

1
8(2J + 1)

[
(J − 1){J2 −X2 − Y2 + (J + 1)(X4 + Y4)} −X5 − Y5 +

1
(J + 1)(2J − 1)

{(J − 1)

[(J − 1)2X1Y1 − (2J + 3)(X4Y2 +X2Y4)] + 2X5Y2 + 2X2Y5} −
1

J(J + 1)(2J − 1)
{(J − 1)(

(J − 1)[(X2 −X4 −X5)Y1 +X1(Y2 − Y4 − Y5)]− (2J3 + 5J2 + 3J − 1)X4Y4 − (2J + 1)X2Y2

)
+ (2J2 + 3J − 1)(X5Y4 +X4Y5)}+

3J − 1
J(J − 1)(J + 1)(2J − 1)

X5Y5

]
CJ6 =

1
8

[
J2 + J + 2−X2 −X4 − Y2 − Y4 +

1
2J(J + 1)

{(2X3 −X7 −X8)Y1 +X1(2Y3 − Y7 − Y8)}

+
1

J(J + 1)(2J − 1)(2J + 3)
{(6J4 + 12J3 + 23J2 + 17J − 16)X1Y1 + (4J2 + 4J − 1)X2Y2

+ (4J4 + 8J3 − 3J2 − 7J + 5)X4Y4 − 2(J2 + J − 1)[(X2 −X4 −X5)Y1 +X1(Y2 − Y4 − Y5)]

− (4J2 + 4J − 5)(X5Y4 +X4Y5)− 2(X4 +X5)Y2 − 2X2(Y4 + Y5)}

+
10(J2 + J − 1)X5Y5

(J − 1)J(J + 1)(J + 2)(2J − 1)(2J + 3)

]

CJ+2
6 =

1
8(2J + 1)

[
(J + 2){(J + 1)2 −X2 − Y2 − J(X4 + Y4)}+X5 + Y5 +

1
J(2J + 3)

{(J + 2)

[(J + 2)2X1Y1 + (2J − 1)(X4Y2 +X2Y4)]− 2X5Y2 − 2X2Y5} −
1

J(J + 1)(2J + 3)
{(J + 2)(

(J + 2)[(X2 −X4 −X5)Y1 +X1(Y2 − Y4 − Y5)]− (2J3 + J2 − J + 1)X4Y4 − (2J + 1)X2Y2

)
+ (2J2 + J − 2)(X5Y4 +X4Y5)}+

(3J + 4)X5Y5

J(J + 1)(J + 2)(2J + 3)

]
(III – 39)
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CJ−1
8 =− 1

8(2J + 1)

[
(J − 1){J2 −X2 − Y2 + (J + 1)(X4 + Y4) +X1Y1} −X5 − Y5 +

1
J + 1

{X2Y2

+X1(2Y3 − Y7 − Y8)} − 1
J(J + 1)

{(J2 + J − 1)(X4Y2 +X2Y4)− (J3 + 2J2 − 2)X4Y4

− (J − 1)[X1(Y2 − Y4 − Y5)− (X2 −X4 −X5)Y1] + (J + 2)(X5Y4 +X4Y5)−X5Y2 −X2Y5}

+
2X5Y5

J(J − 1)(J + 1)

]
CJ+1

8 =− 1
8(2J + 1)

[
(J + 2){(J + 1)2 −X2 − Y2 − J(X4 + Y4) +X1Y1}+X5 + Y5 +

1
J
{X2Y2

+X1(2Y3 − Y7 − Y8)}+
1

J(J + 1)
{(J2 + J − 1)(X4Y2 +X2Y4) + (J3 + J2 − J + 1)X4Y4

+ (J + 2)[X1(Y2 − Y4 − Y5)− (X2 −X4 −X5)Y1]− (J − 1)(X5Y4 +X4Y5)−X5Y2 −X2Y5}

+
2X5Y5

J(J + 1)(J + 2)

]
(III – 40)

For J = 0, the non vanishing values of the coefficients above are:

C0
6 = C2

6 = −C1
8 =

(2−X4)(2− Y4)
16

(III – 41)

with special formulae for all.

3.2.3. – ODD PARITY MULTIPOLE EXPANSIONS

Let us give in these notations the multipoles of the other interactions:

1) the central interaction vanishes.
2) the (~σ1.~σ2) has only two multipole:

CJ−1
6 =

(J +X1)(J + Y1)
J(2J + 1)

CJ+1
6 =

(J + 1−X1)(J + 1− Y1)
(J + 1)(2J + 1)

(III – 42)

3) the spin orbit interaction has only:

CJ−1
6 = − 1

8(2J + 1)

[
2J(J + 1) + (J + 2)(X1 + Y1)−X2 − Y2 +

1
J

(2X1Y1 −X2Y1 −X1Y2)
]

CJ+1
6 =

1
8(2J + 1)

[
2J(J + 1)− (J − 1)(X1 + Y1)−X2 − Y2 −

1
(J + 1)

(2X1Y1 −X2Y1 −X1Y2)
]

CJ8 =
1

8J(J + 1)

[
J(J + 1) + Y1 − Y2

]
X1

(III – 43)
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4) the tensor interaction has different multipoles which we can write:

CJ−2 = −r1r2
(J − 1)(J −X1)(J − Y1)

J(2J − 1)(2J + 1)

CJ+2 = −r1r2
(J + 2)(J + 1 +X1)(J + 1 + Y1)

(J + 1)(2J + 1)(2J + 3)

CJ = (−4 + 2
X1Y1

J(J + 1)
)r1r2 − CJ−2 − CJ+2

CJ−1 = r2
1

(2J +X1)(J − Y1)
J(2J + 1)

+ r2
2

(2J + Y1)(J −X1)
J(2J + 1)

CJ+1 = r2
1

(2J + 2−X1)(J + 1 + Y1)
(J + 1)(2J + 1)

+ r2
2

(2J + 2− Y1)(J + 1 +X1)
(J + 1)(2J + 1)

(III – 44)

5) the ~L2 interaction reduces to:

CJ−1
6 = CJ+1

6 = −CJ8 =
J(J + 1)

8

(
1 +

X1 −X2

J(J + 1)

)(
1 +

Y1 − Y2

J(J + 1)

)
(III – 45)

3.2.3.1. – ODD PARITY MULTIPOLE EXPANSION OF (~L.~σ1)(~L.~σ2)

CJ−1
1 = −CJ+1

1 = − X1Y1

4J(J + 1)(2J + 1)
(III – 46)

CJ−1
2 =− X1

8J(J + 1)(2J + 1)

[
2(J − 1)Y1 − Y3 + (J2 + J − 1)Y4 − Y5

]
CJ+1

2 =− X1

8J(J + 1)(2J + 1)

[
2(J + 1)Y1 + Y3 − (J2 + J − 1)Y4 + Y5}

]
CJ−2

4 =− 1
8(2J − 1)(2J + 1)

[
(J2 − 1)(X4 − Y4)−X5 + Y5 +

1
J
{(J2 − 1)(X4Y1 −X1Y4)−X5Y1

+X1Y5}
]

CJ4 =
1

8(2J − 1)(2J + 3)

[
(2J2 + 2J − 3)(X4 − Y4)− 2X5 + 2Y5

+
1

J(J + 1)
{(J2 + J − 3)(X4Y1 −X1Y4)− 3X5Y1 + 3X1Y5}

]
CJ+2

4 =− 1
8(2J + 1)(2J + 3)

[
J(J + 2)(X4 − Y4)−X5 + Y5 −

1
J + 1

{J(J + 2)(X4Y1 −X1Y4)−X5Y1

+X1Y5}
]

(III – 47)

CJ−1
5 =− X1

16(2J + 1)

[
(J − 2)(J − 1) +

1
J(J + 1)

{(J − 1)(J2 + 2J − 2)Y1 − (J2 − 2J − 1)Y2

+ (J − 2)[(J2 + J − 1)Y4 − Y3 − Y5]− (J2 + J − 1)Y6 − JY7 + Y9

]
CJ+1

5 =
X1

16(2J + 1)

[
(J + 2)(J + 3)− 1

J(J + 1)
{(J + 2)(J2 − 3)Y1 + (J2 + 4J + 2)Y2

+ (J + 3)[(J2 + J − 1)Y4 − Y3 − Y5] + (J2 + J − 1)Y6 − (J + 1)Y7 − Y9

]
(III – 48)
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CJ−1
6 =

1
16(2J + 1)

[
J{4J − (J − 1)(X1 + Y1)} − 3X2 +X7 − 3Y2 + Y7 −

1
J

(3X2Y1

+ 3X1Y2 −X7Y1 −X1Y7)− 1
J + 1

{2(J2 + J + 1)X1Y1 − (J2 + J − 1)(X4Y1 +X1Y4)

+ (X3 +X5)Y1 +X1(Y3 + Y5)}+
1

J(J + 1)
{(J2 + J − 1)(X4Y3 +X3Y4)− 2(J2 − 2)X4Y4

+ 2(J + 2)(X5Y4 +X4Y5) + 2X3Y3 −X5Y3 −X3Y5} −
4X5Y5

J(J − 1)(J + 1)

]
CJ−1

6 =− 1
16(2J + 1)

[
(J + 1){4(J + 1)− (J + 2)(X1 + Y1)} − 3X2 +X7 − 3Y2 + Y7 +

1
J + 1

(3X2Y1

+ 3X1Y2 −X7Y1 −X1Y7) +
1
J
{2(J2 + J + 1)X1Y1 − (J2 + J − 1)(X4Y1 +X1Y4)

+ (X3 +X5)Y1 +X1(Y3 + Y5)}+
1

J(J + 1)
{(J2 + J − 1)(X4Y3 +X3Y4)− 2(J2 + 2J − 1)X4Y4

− 2(J − 1)(X5Y4 +X4Y5) + 2X3Y3 −X5Y3 −X3Y5}+
4X5Y5

J(J + 1)(J + 2)

]
(III – 49)

CJ−2
8 =

1
16(2J − 1)(2J + 1)

[
(J − 1){(J − 2)[J(J +X1)− Y2 − (J + 1)(X4 − Y4)]

+ J(J +X1)Y1 − (J + 1)Y6 − Y7}+ (J − 2)(X5 − Y5) + Y9

− 1
J
{(J − 1)

(
(J − 2)[(J + 1)(X4Y1 −X1Y4) +X1Y2] + (J + 1)(X4Y3 −X4Y4 +X1Y6) +X1Y7

)
− (J − 2)(X5Y1 −X1Y5) + (J + 1)X4Y5 −X5(Y3 − Y4)−X1Y9}+

X5Y5

J(J − 1)

]
CJ8 =− 1

16(2J − 1)(2J + 3)

[
J(J + 1)(2J2 + 2J − 1− 2Y2) + (13J2 + 13J − 9)X1 + (J2 + J − 1)Y1

+ (J2 + J − 3)(X4 − Y4)− (2J2 + 2J − 3)Y6 − 3X5 + 3Y5 + Y7 + 2Y9 +
1

J(J + 1)
{(2J4 + 4J3

− 2J − 3)(X4Y1 −X1Y4)− (6J4 + 12J3 − 10J2 − 16J + 9)X1Y1 − (19J2 + 19J − 12)X1Y2

+ (5J2 + 5J − 6)X4Y4 − (2J2 + 2J + 3)(X5Y1 −X1Y5) + 2(2J2 + 2J − 3)X5Y4

+ 3(2J2 + 2J − 1)X1Y7 − (J2 + J − 3)(X4Y3 − 2X4Y5 +X1Y6) + 3X5Y3 − 6X5Y5 + 3X1Y9}
]

CJ+2
8 =

1
16(2J + 1)(2J + 3)

[
(J + 2){(J + 3)[(J + 1)(J + 1−X1)− Y2 + J(X4 − Y4)]

− (J + 1)(J + 1−X1)Y1 − JY6 + Y7} − (J + 3)(X5 − Y5) + Y9

− 1
J + 1

{(J + 2)
(

(J + 3)[J(X4Y1 −X1Y4)−X1Y2]− J(X4Y3 −X4Y4 +X1Y6) +X1Y7

)
− (J + 3)(X5Y1 −X1Y5) + JX4Y5 +X5(Y3 − Y4) +X1Y9}+

X5Y5

(J + 1)(J + 2)

]
(III – 50)

For J = 0, the non vanishing values of the coefficients above are:

C0
4 =− C2

4 =
X4 − Y4

24
C1

6 = −4−X4Y4

16

C0
8 =− X4Y4 − Y6

48
C2

8 =
12 + 6(X4 − Y4)−X4Y4 − 2X6

96

(III – 51)
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with special formulae for C0
4 , C1

6 and C0
8 .

3.2.3.2. – ODD PARITY MULTIPOLE EXPANSION OF ~L2(~σ1.~σ2)

CJ−3
1 =

(J − 1)(J − 2)(J +X1)(J + Y1)
4J(2J − 3)(2J − 1)(2J + 1)

CJ−1
1 =− 1

4(2J − 3)(2J + 1)(2J + 3)

[
J(J2 − 3) + (3J2 − J − 6)(X1 + Y1) +

X1Y1

J
(J2 + 2J − 6)

]
CJ+1

1 =− 1
4(2J − 1)(2J + 1)(2J + 5)

[
(J + 1)(J2 + 2J − 2)− (3J2 + 7J − 2)(X1 + Y1) +

X1Y1

J + 1
(J2 − 7)

]
CJ+3

1 =
(J + 2)(J + 3)(J + 1−X1)(J + 1− Y1)

4(J + 1)(2J + 1)(2J + 3)(2J + 5)
(III – 52)

CJ−3
2 =

(J − 2)(J +X1)
4J(2J − 3)(2J − 1)(2J + 1)

[
(J − 1){(J − 3)(J + Y1) + Y3 − Y4}+ Y5

]
CJ−1

2 =
1

4(2J − 3)(2J + 1)(2J + 3)

[
(J − 1){J [J2 − J − 3− J(X1 + Y1)] + (J − 3)X1Y1}

+ (J2 + J − 3)(Y3 − Y4)− (J − 3)Y5 −
1

J(J + 1)
{(J3 − J2 − 4J + 3)X1(Y3 − Y4)

− (J2 − J + 3)X1Y5}
]

CJ+1
2 =− 1

4(2J − 1)(2J + 1)(2J + 5)

[
(J + 2){(J + 1)[J2 + 3J − 1 + (J + 1)(X1 + Y1)] + (J + 4)X1Y1}

+ (J2 + J − 3)(Y3 − Y4) + (J + 4)Y5 +
1

J(J + 1)
{(J3 + 4J2 + J − 5)X1(Y3 − Y4)

+ (J2 + 3J + 5)X1Y5}
]

CJ+3
2 =− (J + 3)(J + 1−X1)

4(J + 1)(2J + 1)(2J + 3)(2J + 5)

[
(J + 2){(J + 4)(J + 1− Y1) + Y3 − Y4} − Y5

]
CJ−2

4 =
1

4(2J − 1)(2J + 1)

[
(J − 1)(X3 −X4 − Y3 + Y4) +X5 − Y5 +

1
J
{(J − 1)[(X3 −X4)Y1

−X1(Y3 − Y4)] +X5Y1 −X1Y5}
]

CJ4 =
1

4(2J − 1)(2J + 3)

[
X3 −X4 − 2X5 − Y3 + Y4 + 2Y5 −

1
J(J + 1

{(2J2 + 2J − 3)[(X3 −X4)Y1

−X1(Y3 − Y4)] + 3X5Y1 − 3X1Y5}
]

CJ+2
4 =− 1

4(2J + 1)(2J + 3)

[
(J + 2)(X3 −X4 − Y3 + Y4)−X5 + Y5 −

1
J + 1

{(J + 2)[(X3 −X4)Y1

−X1(Y3 − Y4)]−X5Y1 +X1Y5}
]

(III – 53)
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CJ−3
5 =

J +X1

16J(2J − 3)(2J − 1)(2J + 1)

[
(J − 1){(J − 2)

(
(J − 4)[J(J − 3) + 2Y3 − 2Y4]

− Y2 − Y6

)
+ (J3 − 9J2 + 28J − 24)Y1 − Y7 − 3Y8}+ (J − 2)[2(J − 4)Y5 + Y9] + Y10

]
CJ−1

5 =− 1
16(2J − 3)(2J + 1)(2J + 3)

[
(J − 2){J(J − 1)(J + 1)(J + 3 + 3X1)− 2(3J2 + 2J − 6)(Y3 − Y4)

− 2(J + 6)Y5}+ (3J4 + 2J3 − 5J2 − 10J + 6)Y1 + (J3 + 11J2 − 14J − 6)X1Y1

− (4J3 − 9J2 − 10J + 21)Y2 − (4J3 − J2 − 10J + 3)Y6 − (4J2 + J − 9)Y7 − (4J2 + 3J − 9)Y8

+ (J − 3)Y9 + 3Y10 −
X1

J
{(4J3 − 7J2 − 7J + 12)Y2 + (4J2 − J − 6)Y7}

− X1

J(J + 1)
{2(J − 2)[(J3 + 4J2 + 2J − 6)(Y3 − Y4) + (3J2 + 4J + 6)Y5] + (4J4 + 5J3 − 14J2

− 13J + 12)Y6 + (4J3 + 9J2 − 3J − 18)Y8 − (3J2 + J − 12)Y9 − (J + 6)Y10}
]

CJ+1
5 =− 1

16(2J − 1)(2J + 1)(2J + 5)

[
(J + 3){J(J + 1)(J + 2)(J − 2− 3X1)− 2(3J2 + 4J − 5)(Y3 − Y4)

+ 2(J − 5)Y5} − (3J4 + 10J3 + 7J2 + 6J + 12)Y1 + (J3 − 8J2 − 33J − 18)X1Y1

− (4J3 + 21J2 + 20J − 18)Y2 − (4J3 + 13J2 + 4J − 8)Y6 + (4J2 + 7J − 6)Y7 + (4J2 + 5J − 8)Y8

+ (J + 4)Y9 − 3Y10 +
X1

J + 1
{(4J3 + 19J2 + 19J − 8)Y2 − (4J2 + 9J − 1)Y7}

+
X1

J(J + 1)
{2(J + 3)[(J3 − J2 − 3J + 5)(Y3 − Y4)− (3J2 + 2J + 5)Y5] + (4J4 + 11J3 − 5J2

− 14J + 10)Y6 − (4J3 + 3J2 − 9J + 10)Y8 − (3J2 + 5J − 10)Y9 + (J − 5)Y10}
]

CJ+3
5 =

J + 1−X1

16(J + 1)(2J + 1)(2J + 3)(2J + 5)

[
(J + 2){(J + 3)

(
(J + 5)[(J + 1)(J + 4) + 2Y3 − 2Y4]

+ Y2 + Y6

)
− (J3 + 12J2 + 49J + 62)Y1 − Y7 − 3Y8]} − (J + 3)[2(J + 5)Y5 − Y9]− Y10

]
(III – 54)

CJ−3
6 =− J − 2

8J(J − 1)(2J − 3)(2J − 1)(2J + 1)

[
(J − 1){(J − 2)(J +X1) +X3 −X4}+X5

]
[
(J − 1){(J − 2)(J + Y1) + Y3 − Y4}+ Y5

]
CJ−1

6 =− 1
8(2J − 3)(2J + 1)(2J + 3)

[
J(7J4 − 6J3 + 6J2 + 13J − 48) + (5J4 − J3 + 9J2

+ 4J − 48)(X1 + Y1) + (3J3 − 2J2 − 8J + 6)(X3 + Y3 −X4 − Y4) + (J2 + 2J − 6)(X5 + Y5) +
1
J

{(7J4 + 9J2 − 5J − 48)X1Y1 + (J2 + 2J − 6)(X4Y3 +X3Y4) + (5J − 6)(X5Y3 +X3Y5)}

+
1

J(J + 1)
{(8J5 + 12J4 − 23J3 − 34J2 + 13J + 15)X4Y4 + (J4 − 4J2 − 2J + 6)(X3Y1

−X4Y1 +X1Y3 −X1Y4) + (7J3 + J2 − 14J − 3)X3Y3 + (3J3 − 4J − 6)(X5Y1 +X1Y5)

− (8J3 + 9J2 − 19J − 15)(X5Y4 +X4Y5)}+
5X5Y5

J(J − 1)(J + 1)
(3J2 − 2J − 3)

]
+

1
16J

[
(J +X1){(J − 2)Y2 + JY6 + Y7 + Y8}

+ {(J − 2)X2 + JX6 +X7 +X8}(J + Y1)
]
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CJ+1
6 =− 1

8(2J − 1)(2J + 1)(2J + 5)

[
(J + 1)(7J4 + 34J3 + 66J2 + 45J − 42)− (5J4 + 21J3 + 42J2

+ 37J − 37)(X1 + Y1) + (3J3 + 11J2 + 5J − 9)(X3 + Y3 −X4 − Y 4)− (J2 − 7)(X5 + Y5) +
1

J + 1
{(7J4 + 28J3 + 51J2 + 51J − 27)X1Y1 + (J2 − 7)(X4Y3 +X3Y4)− (5J + 11)(X5Y3 +X3Y5)}

+
1

J(J + 1)
{(8J5 + 28J4 + 9J3 − 27J2 + 4J + 5)X4Y4 − (J4 + 4J3 + 2J2 − 2J + 5)(X3Y1

−X4Y1 +X1Y3 −X1Y4) + (7J3 + 20J2 + 5J − 5)X3Y3 + (3J3 + 9J2 + 5J + 5)(X5Y1 +X1Y5)

− (8J3 + 15J2 − 13J − 5)(X5Y4 +X4Y5)}+
5X5Y5

J(J + 1)(J + 2)
(3J2 + 8J + 2)

]
+

1
16(J + 1)

[
(J + 1−X1){(J + 3)Y2 + (J + 1)Y6 − Y7 − Y8}

+ (J + 1− Y1){(J + 3)X2 + (J + 1)X6 −X7 −X8}
]

CJ+3
6 =− J + 3

8(J + 1)(J + 2)(2J + 1)(2J + 3)(2J + 5)

[
(J + 2){(J + 3)(J + 1−X1) +X3 −X4} −X5

]
[
(J + 2){(J + 3)(J + 1− Y1) + Y3 − Y4} − Y5

]
(III – 55)

CJ−2
8 =

1
8(2J − 1)(2J + 1)

[
(J − 1)(J +X1){J(J − 2 + Y1)− Y6}+

1
J
{(J − 2)

(
(J − 1)

[(X3 −X4)(J + Y1)− (J +X1)(Y2 + Y3 − Y4)] +X5(J + Y1)− (J +X1)Y5

)
+ (J − 1)[(X3 −X4)(Y3 − Y4)− (J +X1)(Y7 + Y8)] +X5(Y3 − Y4) + (X3 −X4)Y5}

+
X5Y5

J(J − 1)

]
CJ8 =

1
8(2J − 1)(2J + 3)

[
J(J + 1){2J2 + 2J − 2−X1}+ (2J2 + 2J − 1)(X1Y1 − Y6) + (2J2 + 2J − 3)

{X3 −X4 − Y2 − Y3 + Y4}+ (3J2 + 3J − 2)Y1 + 3X5 + 3X1Y2 + 2X3Y3

− 3Y5 −X1Y6 − (1 + 2X1)(Y7 + Y8) +
1

J(J + 1)
{(J2 + J − 3)[(X3 −X4)Y1 −X1(Y3 − Y4)]

+ (2J2 + 2J + 3)(X5Y1 −X1Y5) + (4J4 + 8J3 − 5J2 − 9J + 6)X4Y4 + (2J2 + 2J − 3)

(X4Y3 +X3Y4 − 2X5Y4 − 2X4Y5)− 3X5Y3 − 3X3Y5 + 6X5Y5}
]

CJ+2
8 =

1
8(2J + 1)(2J + 3)

[
(J + 2)(J + 1−X1){(J + 1)(J + 3− Y1)− Y6}+

1
J + 1

{(J + 3)
(

(J + 2)

[(X3 −X4)(J + 1− Y1)− (J + 1−X1)(Y2 + Y3 − Y4)]−X5(J + 1− Y1) + (J + 1−X1)Y5

)
+ (J + 2)[(X3 −X4)(Y3 − Y4) + (J + 1−X1)(Y7 + Y8)]−X5(Y3 − Y4)− (X3 −X4)Y5}

+
X5Y5

(J + 1)(J + 2)

]
(III – 56)

For J = 0, thirteen coefficients cannot be obtained from the formulae above. They
are:

C1
1 =− C3

1 = − 1
10

C1
2 = −2 + Y4

20
C3

2 = −8− Y4

20

C0
4 =− C2

4 = −X4 − Y4

12
C1

5 =
Y6

20
C3

5 =
40− 10Y4 + Y6

80
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C1
6 =− 84− 4(X4 + Y4)− 5(X6 + Y6) + 9X4Y4

16
C3

6 = − (6−X4)(6− Y4)
80

C0
8 =

X4Y4 − Y6

24
C2

8 =
12− 6(X4 − Y4) +X4Y4 − 4Y6

48

(III – 57)

with special formulae for C1
6 and C0

8 .
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4. – ZERO RANGE

4.1. – ZERO RANGE LIMITS

The zero range limit is obtained by replacing the multipole VL in the matrix element:∫ ∞
0

f1(r1)f2(r2)rm1 r
n
2VL

dp

rp1
f3(r1)

dq

rq2
f4(r2)r2

1r
2
2dr1dr2 (IV – 1)

by the multipole of the function δ(r) which is 1
r2
1
δ(r1 − r2) or, if the result vanishes, by the next term

δ′′(r) which is:

δ′′(r)⇒ 1
r2
1

δ(r1 − r2)
{ 1
r1

d2

dr2
1

r1 −
L(L+ 1)

r2
1

}
rm1

dp

rp1
f1(r1)f3(r1) (IV – 2)

or by higher terms if the result still vanishes as it is the case for the tensor potential. In this expression,
the derivation acts on the product of functions of r1, except for r2

1dr1.
Note that in a finite range matrix elements, only the functions f3(r1) and f4(r2) are

derived and in a zero range matrix element, the function f1(r1) also can be derived.

4.1.1. – LIMIT OF THE DIFFERENT KINDS OF MULTIPOLES

For the second derivative terms, the sum of the coefficients of the different multipoles
vanishes, so the derivative part of the limit of the multipole does not contribute. Consequently,
we get:

C1 ⇒ k1

∫ ∞
0

f1(r)f2(r)
[
f3(r)f ′′4 (r)− 2f ′3(r)f ′4(r) + f ′′3 (r)f4(r)

]
r2dr (IV – 3)

where:
k1 = −

∑
L

L(L+ 1)CL1 (IV – 4)

For the first derivative terms, taking into account the relations between the multipoles,
1) the triple derivatives cancel out,
2) a double derivative remains,
3) first derivative terms add with those depending on the angular momentum:

C2, C3, C4, D2, D3, D4 ⇒

k′2

∫ ∞
0

{
f1(r)f2(r)

[
f ′3(r)f ′4(r)− f ′′3 (r)f4(r)

]
+ f ′1(r)f2(r)

[
f3(r)f ′4(r)− f ′3(r)f4(r)

]}
r2dr

+k′3

∫ ∞
0

1
r
f1(r)f2(r)f3(r)f ′4(r)r2dr + k′4

∫ ∞
0

1
r
f1(x)f2(x)f ′3(r)f4(r)r2dr

(IV – 5)
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where:

k′2 = 4
∑
L

CL2

k′3 = 6
∑
L

CL2 +
∑
L

L(L+ 1)(CL1 − CL2 + CL3 )−
∑
L′

L′(L′ + 1)CL
′

4

k′4 = −2
∑
L

CL2 +
∑
L

L(L+ 1)(CL1 + CL2 − CL3 ) +
∑
L′

L′(L′ + 1)CL
′

4

(IV – 6)

For all the interactions which we consider, k′2 = 2k1 and k′4 = −k′3 and the sum of the two
terms can be written as:

k1

∫ ∞
0

{
f1(r)f2(r)

[
f3(r)f ′′4 (r)− f ′′3 (r)f4(r)

]
+ 2f ′1(r)f2(r)

[
f3(r)f ′4(r)− f ′3(r)f4(r)

]}
r2dr

+k2

∫ ∞
0

1
r
f1(r)f2(r)

[
f3(r)f ′4(r)− f ′3(r)f4(r)

]
r2dr

(IV – 7)

For the non derivative terms, taking into account the relations between the multipoles, the
same occurs:

C5, C6, C7, C8, C9 ⇒

k3

∫ ∞
0

1
r
f2(r)f4(r)

[
f ′1(r)f3(r) + f1(r)f ′3(r)

]
dr + k4

∫ ∞
0

1
r2
f1(r)f2(r)f3(r)f4(r)dr

(IV – 8)

where:

k3 = 4
∑
L

(CL5 − CL7 ) + 2
∑
L′

(CL
′

8 − CL
′

9 )

k4 =
∑
L

(6CL5 + 2CL7 ) + 2
∑
L′

CL
′

8 −
∑
L

L(L+ 1)(CL5 + CL6 + CL7 )

−
∑
L′

L′(L′ + 1)(CL
′

8 + CL
′

9 )

(IV – 9)

The total matrix element is:

k1

∫ ∞
0

{
f1(r)f2(r)

[
f3(r)f ′′4 (r)− f ′′3 (r)f4(r)

]
+ 2f ′1(r)f2(r)

[
f3(r)f ′4(r)− f ′3(r)f4(r)

]}
r2dr

+
∫ ∞

0

1
r
f2(r)

[
k2f1(r)f3(r)f ′4(r) + (k3 − k2)f1(r)f ′3(r)f4(r) + k3f

′
1(r)f3(r)f4(r)

]
r2dr

+k4

∫ ∞
0

1
r2
f1(r)f2(r)f3(r)f4(r)r2dr

(IV – 10)

4.1.2. – ZERO RANGE LIMIT EVEN PARITY

for ~L2:
k1 = −(2J + 1)

k2 = −2(2J + 1)

k3 = 0
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k4 =
2J + 1

4

[
− 6J(J + 1) +X2 − 2X4 +X6 + Y2 − 2Y4 + Y6 +

2
J(J + 1)

(X1 −X3)(Y1 − Y3)
]

for (~L.~σ1)(~L.~σ2):

k1 =
2J + 1

2J(J + 1)
X1Y1

k2 =
2J + 1

4

[
X1 − Y1 +

1
J(J + 1)

(X2Y1 −X1Y2)
]

k3 =
2J + 1

4

[
X1 − Y1 +

1
J(J + 1)

(X2Y1 −X1Y2)
]

k4 =
2J + 1

8

[
− 2(J2 + J + 3) +X1 − Y1 + 2X2 + 2Y2 + 3X4 + 3Y4 + 4X1Y1 − 2X4Y4

− 1
J(J + 1)

{3X1Y1 +X1(Y2 − 3Y3 + Y8)− (X2 + 3X3 −X8)Y1 + 2X2Y2 −X4Y4 −X5Y4 −X4Y5

+ 2X5Y5}
]

for ~L2(~σ1.~σ2):

k1 =
2J + 1
J(J + 1)

X1Y1

k2 = 2
2J + 1
J(J + 1)

X1Y1

k3 = 0

k4 =
2J + 1

4

[
− 2(J2 + J + 2) + 2X2 + 2Y2 + 2X4 + 2Y4 + 6X1Y1 − 2X4Y4

+
1

J(J + 1)
{(2X3 −X7 −X8)Y1 +X1(2Y3 − Y7 − Y8)− 2X2Y2 + 2X4Y4 + 2X5Y4 + 2X4Y5}

− 4X5Y5

(J − 1)J(J + 1)(J + 2)

]

4.1.3. – ZERO RANGE LIMIT ODD PARITY

for ~L2:
k1 = k2 = k3 = 0

k4 = 2
(

1− X1 −X2

J(J + 1)

)(
1− Y1 − Y2

J(J + 1

)
for (~L.~σ1)(~L.~σ2):

k1 = − 2J + 1
2J(J + 1)

X1Y1

k2 =
2J + 1

4

[
X4 − Y4 +

1
J(J + 1)

(X1Y3 −X3Y1)
]

k3 =
2J + 1

4

[
2X1 − 2Y1 +X4 − Y4 +

1
J(J + 1)

(X1Y3 −X3Y1)
]
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k6 =
2J + 1

8

[
− 6(J2 + J + 1) + 7X1 +X2 +X4 +X6 + 3Y1 + Y2 − Y4 + Y6 − 2X1Y1

+
1

J(J + 1)
{3X1Y1 −X1(3Y2 − Y3 − Y7)− (3X2 +X3 −X7)Y1 + 2X3Y3 −X4Y4 −X5Y4 −X4Y5}

+
2X5Y5

(J − 1)J(J + 1)(J + 2)

]
for ~L2(~σ1.~σ2):

k1 = − 2J + 1
J(J + 1)

[
J(J + 1) +X1Y1

]
k2 = −2

2J + 1
J(J + 1)

[
J(J + 1) +X1Y1

]
k3 = 0

k4 =
2J + 1

4

[
− 6(J2 + J + 2) + 10X1 +X2 +X6 + 10Y1 + Y2 + Y6 − 6X1Y1 + 2X4Y4

− 1
J(J + 1)

{X1(2Y2 − Y7 − Y8) + (2X2 −X7 −X8)Y1 − 2X3Y3 + 2X4Y4 + 2X5Y4 + 2X4Y5}

+
4X5Y5

(J − 1)J(J + 1)(J + 2)

]

4.1.4. – ZERO RANGE LIMIT OF ~L2 AND (~L.~S)2

The coefficients of the two body form factors are given by a subroutine of 400 lines for the
natural parity interaction and another one of 480 lines for the unnatural parity ones.

There are a maximum of twenty one body form factors
1) two with second derivative of the free wave function, with constant coefficient and Y1

2) six with first derivative of the free wave function, with constant coefficient and from
Y1 to Y5

3) twelve without derivative of the free wave function, with constant coefficient and from
Y1 to Y11 (only eleven in unnatural parity cases).

As these operators do not contribute in the relative L = 0 state, their zero range limit is
for the relative L = 1 state. There are only the zero range limits of ~L2

(S=0,T=0), ~L
2
(S=1,T=1) and

(~L.~S)2
(S=1,T=1). The other vanish to higher order.

As can be seen by writing down these interactions in the relative coordinates, the zero
range limits of ~L2 are identical to the Skyrme interactions V Skyrme(S=0,T=0) and V Skyrme(S=1,T=1).

The zero range limit of (~L.~S)2 cannot be independent of the zero range limit of ~L2, (~L.~S)
and the tensor interaction because there are only three substates J = 0, 1, 2 for the relative
state L = 1. The relation is:

(~L.~S)2 =
4
5
~L2 +

1
60
V T(T=1) (IV – 11)
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5. – DWBA98/DWBB98

The code DWBA91 added the possibility to compute the distorted waves from the two-body interaction
and a description of the target in terms of occupation numbers. The potential is the one of a natural parity
transition with J = 0. The direct term is very simple but the exchange terms include first derivative coming
from the spin–orbit interaction and double derivatives when ~L2 or quadratic spin–orbit interactions are
present. For a spin–zero target, there is a single integro–differential equation, which can be solved after an
approximate discretisation by an iteration technique described in the subroutine INTE.

There was two versions of DWBA91: one for computers with high precision like the CRAY’s, called
CDC version and one for computers for which double precision is often necessary as the SUN’s or the VAX’s,
called IBM version. In these last version, distorted waves and interactions are handled with single precision
as the knowledge of their value is not so good. But this turned out to be insufficient to obtain the distorted
waves from the two body interaction in some cases. A double precision IBM version has been used for studies
of elastic scattering [10] P. J. DORTMANS, K. AMOS and S. KARATAGLIDIS, Journal of Physics G23,
183 (1997), [11] P. J. DORTMANS, K. AMOS, S. KARATAGLIDIS and J. RAYNAL, Phys. Rev. C58,
2249 (1998).

5.1. – ELASTIC SCATTERING

The computation of elastic scattering taking into account exchange interaction is very time con-
suming. For each value of the angular momentum and of the total spin, the matrix of the interaction
must be computed. These matrices can be written on a file; computation for another energy with the
same interaction, the same description of the target and the same integration points takes a negligible
time in comparison if the matrices are read on a file. The name of the file is fort.8 if no other number
is specified. Specification of the file allows to keep and to use different ones for the initial and the
final state.

The elastic scattering can be considered as a particle-hole excitation of natural parity with J = 0.
The quantum numbers of the particle and the hole are the same and the quantity −

√
2j + 1Z0

jj where
Z is a particle-hole amplitude, is the occupation number.

In the direct term, in the expression given by Equ (I–53), the form factor B0 vanishes; with
a spin–orbit interaction, the derivative terms disappear, but the form factor BO2 (r) remains and is
multiplied by the eigenvalue of 2κ = 2(~l.~s+ 1): it is the spin–orbit potential and a small contribution
to the central potential. There is no difficulty to solve a Schrödinger equation with this two potentials.
With quadratic spin-orbit two body interactions, there are three other form-factors V0(r), V1(r), V2(r) :
a quadratic spin orbit with the factor κ2, a first derivative and a second derivative. The equation to
solve is then :{ d2

dr2
−
[
E − l(l + 1)

r2
+A(r) + 2κB0

2(r) + 4κ2V0(r)
]
− V1(r)

d

dr
− V2(r)

d2

dr2

}
flj(r) = 0 (V – 1)

This equation is written :

{ d2

dr2
−
[
E − l(l+1)

r2 +A(r) + 2κB0
2(r) + 4κ2V0(r)

]
1− V2(r)

}
flj(r) = 0 (V – 2)

If the DWBA error due to the absence of first derivatives :

∆Clj =
∫ Rm

0

flj(r)
V1(r)

1− V2(r)
d

dr
flj(r)dr (V – 3)

is too large, the equation is solved as explained below when there are exchange term.
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For the exchange term, one can built the two kernels K(x, y), K ′(x, y) and K”(x, y) such that
the DWBA approximation is given by :

C
(0)
lj =

∫ Rm

0

glj(x)dx
∫ Rm

0

{
K(x, y)glj(y) +K ′(x, y)

d

dr
glj(y) +K”(x, y)

d2

dr2
glj(y)

}
dy (V – 4)

where Rm is some matching radius beyond which the interaction vanishes. These kernels are strongly
dependents upon the quantum numbers l and j and they have to be computed for each of their values.
For each particle-hole component defined by (lp, jp), (lh, jh), ( (here with lh = lp, jh = jp, the values
of J range from |j − jp| to j + jp with alternate natural and unnatural parity following the value of
J + l + lp. The two special Clebsch–Gordan coefficients are the same and the 6j−symbol of the last
part of Equ (I–33) reduces to −(2J + 1)/

√
(2j + 1)(2j′ + 1).

The equation to solve is then :

{ d2

dr2
−
[
E − l(l + 1)

r2
+A(r) + 2κB0

2(r) + 4κ2V0(r)
]
− V1(r)

d

dr
− V2(r)

d2

dr2

}
flj(r)

−
∫ Rm

0

{
K(r, r′)flj(r′) +K ′(r, r′)

d

dr′
flj(r′) +K”(r, r′)

d2

dr′2
flj(r′)

]
dr′ = 0

(V – 5)

With the values f(nh) of a function at equidistant points nh up to the point Nh, the first and second
derivatives are obtained by :

d

dr
f(nh) =

1
60h

{
f(nh+ 3h)− f(nh− 3h)− 9

[
f(nh+ 2h)− f(nh− 2h)

]
+ 45

[
f(nh+ h)− f(nh− h)

]}
− h6

420
d7

dr7
f(nh)

d2

dr2
f(nh) =

1
180h2

{
2
[
f(nh+ 3h) + f(nh− 3h)

]
− 27

[
f(nh+ 2h) + f(nh− 2h)

]
+ 270

[
f(nh+ h) + f(nh− h)

]
− 490f(nh)

}
− h6

560
d8

dr8
f(nh)

(V – 6)

for 3 < n < N − 2. For n ≤ 3 other formulae are used, involving the values f(ih) for i = 1 . . . 6
with the assumption that f(0) = 0. For n ≥ N − 2 other formulae are used involving f(ih) for
i = N − 6 . . . N . These formulae can be used to extract the first or second derivative for a known
function but cannot be introduced to replace the derivatives by the function itself, because they will
act as recurrence relations for these derivatives. To see this effect, one can compute the roots of there
recurrences, which shows how they propagate the errors. For that we replace f(nh) by xn and we
obtain :

x6 − 9x5 + 45x4 − 45x2 + 9x− 1 = (x2 − 1)x2
[
(x+

1
x

)2 − 9(x+
1
x

) + 44
]

2x6 − 27x5 + 270x4 − 490x3 + 270x2 − 27x+ 2 = (x− 1)2x2
[
2(x+

1
x

)2 − 23(x+
1
x

) + 218
] (V – 7)

The roots of the first equation are x = ±1, x = 4.400499678± i4.986139479 and the inverses of these
two last ones. The roots of the second equations are twice x = 1, x = 5.698108515 ± i8.794300388
and the inverses of these two last ones. If after some recurrence steps an error has been made, the
errors related to |x| < 1 disappear, the errors related to |x| = 1 stay constant but the errors related
to |x| > 1 grow tremendously. It is only possible to use :

d

dr
f(nh) =

1
2h
[
f(nh+ h)− f(nh− h)

]
d2

dr2
f(nh) =

1
h2

[
f(nh+ h)− 2f(nh) + f(nh− h)

] (V – 8)
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of which all the characteristic roots are ±1.
By a choice of equidistant points with step h from the origin to the matching point Rm, the

integro differential equation of is replaced by a set of linear equation. Noting by ;

Ki,j =

[
E − l(l+1)

r2
i

+A(ri) + 2κB0
2(ri) + 4κ2V0(ri)

]
δi,j +K(ri, rj)

1− V2(ri)
,

K′i,j =
V1(ri)δi,j +K ′(ri, rj)

1− V2(ri)
,

K”i,j =
K”(ri, rj)(1− δi,j)

1− V2(ri)
, Di = 1− K”(ri, ri))

1− V2(ri)

(V – 9)

where 1 ≤ (i, j) ≤ N . Using low order expressions for the derivatives, this linear system is ;

Di
d2

dr2
f(ih)−

∑
j

Mi,jf(jh) = 0 (V – 10)

with :
Mi,j =

{
Ki,j +

1
2h
[
K′i,j−1 −K′j+1

]
+

1
h2

[
K”i,j−1 − 2K”i,j +K”i,j+1

]}
(V – 11)

For the first point, the first and second derivatives are replaced by l+ 1 and l(l+ 1), values expected
at the first point with respect to the angular momentum l of the function.

The linear system is rewritten :∑
j

Di(δi,j+1 − 2δi,j + δi,j−1) +
1
12

(Mi,j+1 + 10Mi,j +Mi,j−1)fj =
∑
j

Mi,jfj = 0 (V – 12)

with the assumption that f0 = 0, Mi,0 = 0 and Mi,N+1 = 0. The term δN,N+1 is absent in the last
equation, so the solution is :

fi =
(
M−1

)
i,N
, fN+1 = 1 (V – 13)

Then d
drfi and d2

dr2 fi are computed using the precise expressions and their variants for the three first
and the three last points. The ”errors on the equations” ∆fi are the residual values for each point,
using the matrices K, K′ and K” with the precise derivatives. They are ;

∆fi = Di
d2

dr2
fi −

∑
j

Mi,jfj (V – 14)

The corresponding errors δfi on fi are obtained by :

δgi =
∑
j

(
M−1

)
i,j

∆fj (V – 15)

The criterion of convergence is ;
S =

∑
i

|δgi|2 (V – 16)

If S ≤ ε, the system is considered as solved (default value ε = 10−6. If S ≥ ε, ∆gj is subtracted to gi
and the process done again up to four times.

NOTES ON DWBA98/DWBB98 V - 3 Jacques RAYNAL



Date 18/11/1999 40 DWBA98/DWBB98

5.2. – DENSITY DEPENDENCE

The density dependence for a given target is in fact a variation of the strength of the interaction
in function of the distance to the center of mass of the target. It can be given directly at different
radii or as a function of the density of protons or neutrons. The density can be given as a profile
defined by a Fermi form–factor with a given diffuseness and a reduced radius to multiply by the cubic
root of the mass of the target. The density can also be computed from the description of the target.
Proton density is used for the excitation of particle–hole proton states, the sum of the two densities
or the neutron density for the excitation of neutron states.

But the multipole expansion involves the radii r1 and r2 whereas the density is a function of only
one radius r. Three possibilities can be used :

1) the geometric mean approximation, which is the use of the product of square roots of the strengths
defined at r1 and at r2. The square roots are computed after the obtaining the value of the
interaction at each point and must be continuous. This method is excluded for a real interaction
with a change of sign.

2) the arithmetic mean approximation which is the use of the half sum of the strengths defined at
r1 and at r2.

3) the middle distance approximation which is the use of the strength at the point 1
2 (r1 + r2). In

this case, the advantage of using three successive single integrations for a Yukawa form factor is
lost.
This last possibility has been added in DWBA98.

5.3. – OBSERVABLES AND DWBB98

In the codes DWBA82 and DWBA91, there was the possibility to sum on J-transfers. No ampli-
tudes were kept and the cross-sections, polarisations or analysing powers were summed for different
J . This method can be extended to the spin–transfer coefficients, which are also an incoherent sum
on spin–transfer but not for spin–correlation coefficients (polarised beam on a polarised target) for
which there are also coherent effects. There was not possible to add J–transfer results to the elastic
scattering for a target with spin non zero.

The need of such results is quite exceptional. The codes ECISxx include since a long time the
computation of many kinds of observables. DWBB98, beside the input of the results of DWBA98
consists in s small number of simplified subroutines of ECIS; the definition and the diversity is the
same.

The number of standard observables, which can be defined by a positive value, has been increased.
It involves all the observables which can be measured with a polarised beam on a polarised target and
all the spin–transfer observables.
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6. – DESCRIPTION of DWBA98/DWBB98

The structure of the codes DWBAxx, starting with DWBA82 is the same as the structure of the codes
ECISxx. A large array is used to store every quantities with no limitation to any peculiar dimension. The
limitation is the maximum size of this array available on the computer.

We shall describe the subroutines in the order of their appearance in the code. The Table of Contents
of these paragraph will reproduce a flow chart of the program.

The subroutine are stored separately in data sets ”xy zzzz.f” in which ”xy” are chosen such the al-
phabetical order reproduces the order of appearance and ”zzzz” are the four characters of the name of the
subroutine or function ”ZZZZ”. In ”xy”, ”x” is ”a” for time and memory control subroutines which can be
more or less machine dependent, ”b” for input or distorted waves subroutines, ”c” for main computation
and results, ”d” for DWBB98 and ”y” is ”1, 2, ..., 9, a, b, ...”.

SUBROUTINES OF DWBA98

6.1. – a1 dwba.f

The main subroutine is CALC, from which the calculation never returns. The MAIN defines only
the working array and calls CALC. It is the unique subroutine to compile if the working array must
be increased. This subroutine and the other ”ay zzzz.f” subroutines are the almost the same as those
used in the codes ECISxx and have the same old story [12] J. RAYNAL, Notes on ECIS94, CEA
Report CEA-N-2772 (1994).

6.1.1. – a2 memo.f

The subroutine MEMO is called from anywhere to check that the size of the working
array is enough. If this size is insufficient, this subroutine returns LO(19)=.TRUE. and the
calculation is stopped.

6.1.2. – a3 hora.f

The subroutine HORA is called from different places to give the elapsed CPU time for
the Job. It uses the subroutine STIM to get the allowed remaining CPU time. It prints the
CPU time elapsed since the first call in hours, minutes, seconds and milliseconds and the time
elapsed since last call in milliseconds.
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6.1.3. – a4 stim.f,a5 etim.c

This subroutine STIM is very machine dependent and is the same as for ECIS. However,
as there is no automatic search, any subroutine which gives the elapsed time of the job can be
used instead of STIM. This version of STIM uses the system function ETIME of UNIX. The
subroutine written in C, ”a5 etim.c” replace ETIME in the LINUX system; it comes from a
SLACKWARE distribution.

Except for the change mentioned above for the subroutine MEMO, all the possibilities described in the
Notes on ECIS to use the code on various computer can be used for DWBA. The only difference is that this
code does not need the remaining time of the job.

6.2. – b1 calc.f

Comment cards of this subroutine give the signification of many quantities in use, in peculiar of
the logical LO and of the addresses in the large array. There is no return from this subroutine. The
code can stop only on the input of the control word ”FIN” in the subroutine LECT.

The operations done in this subroutine are:
1) set to .TRUE. the controls LO(1) to LO(7) before the first input.
2) call the subroutine LECT to read input.
3) call the subroutine DIRA for the direct calculation.
4) call the subroutine SCEF to print results without exchange.
5) if exchange is requested ( LO(17)=.FALSE. ) call the subroutine ECHA to do the exchange

calculation. If exchange is not requested ( LO(17)=.TRUE. ), go back to 2) and call again LECT
for a new input.

6) call the subroutine SCEF to print results with exchange.
7) call again the subroutine LECT to stop, get the input of another run or the data for another

J-transfer.

6.3. – b2 lect.f

This subroutine reads all the input. This input stream is grouped into categories preceded by an
integer ILECT which runs from 1 to 7. The first input stream must be read in the order of
increasing ILECT. The different categories are

ILECT=1 Description of the single particle bound states.
ILECT=2 Description of two body interaction.
ILECT=3 Presentation of the results.
ILECT=4 Optical model of the initial channel.
ILECT=5 Optical model of the final channel.
ILECT=6 Description of the excited state.
ILECT=7 End of the input stream for this calculation.

For each category of data corresponding to ILECT=1 to 6, there is an upper limit of resident
quantities in the array. Intermediate computation are performed beyond the upper limit already in
use. If in a subsequent calculation the upper limit of new data is larger then the previous one, the
data for larger values of ILECT must be read again.
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If this calculation is not the first one and the previous calculation involved a summation on
J-transfer ( LO(8)=.TRUE. ) and the has not been read ( LO(18)=.TRUE. in the last input ) the
subroutine reads the description of the new J-transfer ( in the category ILECT=6, but without reading
ILECT ).

In any other case, this input starts by a title card:
1) if this title is ’DESCRIPTION ’ from column 1, the description of the input is printed by

calling the subroutines INPA and INPB. Then, a new title card is read.
2) if this title is ’FIN ’ from column 1, the calculation is stopped.
3) if the title card is neither ’FIN ’ or ’DESCRIPTION ’, the subroutine LECT reads a card of

logical control.

6.3.1. – b3 inpa.f,b4 inpb.f

These two subroutine are called one after the other if the title is ’DESCRIPTION ’. They
include only WRITE statements and they have been generated from the text written on cards
with a special program. There are 968 lines in 16 pages generated by ”L̂” characters. This is
the description of input for DWBA98 followed by the description of input for DWBB98.

The description of the subroutines called by LECT is given according to which value of ILECT uses
them.

6.3.2. – ILECT=1: Description of the single particle bound states.

The subroutine LECT reads only the number of configurations and the number of steps of
integration.

6.3.2.1. – b5 lec1.f

Reads data and sets up the single particle bound states by calling the subroutine
STDP. Eventually, sums the harmonic oscillator functions with different radial quantum
numbers. Computes the ’u’ parameter of BCS one particle states from the value of
the parameter ’v’, which is read. If wanted, orthogonalises solutions of Woods-Saxon
potential with the same non radial quantum numbers.

6.3.2.2. – b6 stdp.f

This subroutine computes the Laguerre polynomials or a bound state in a Woods-
Saxon potential. In this case, a search on the depth of the real potential is performed to
find the bound state with a given binding energy.

6.3.3. – ILECT=2: Description of two body interaction.

The subroutine LECT reads only the number of range and some storage requirements and
the number of configurations describing the target. This number of configurations is required
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for a density dependent interaction computed from the occupations number of the target. For
an exchange reaction, these data can have to be read three times: for the initial state, for the
final state and for the transition; if the storage needed for the first set of data, the storage
requirement must be larger or equal to the largest one.

If the number of configuration is not zero, go to ILECT=6 data before calling LEC2.

6.3.3.1. – b7 lec2.f

There are two arrays, KTF(7,7,KV) and CVF(7,6,KV), where KV is the number of
different ranges. In a first part, after some logicals, the subroutine reads for each range J,
the value of the range in CMU(1,J) and the code key of each interactions in KTF(I,K,J)
for I=1 to 7 and K=1,2 which must be identical for K=1 and K=2 (that is T=0 and T=1,
remnant of old versions in which they could be different). The subroutine determines
how many form factors are present with this interaction. This number is the element
ILL(I,J) of an array ILL(3,4):

I=1 for non derivative form factors,
I=2 for first derivative form factors,
I=3 for second derivative form factors,
J=1 for natural parity in the direct calculation,
J=2 for unnatural parity in the direct calculation,
J=3 for natural parity in the exchange calculation,
J=4 for unnatural parity in the exchange calculation.

The Coulomb potential is read or settled to its default value.
For each non zero interaction ( code key not 0 ), the code key is read again with the

description of the interaction. The code key 4 of the previous version (complex density
dependent interaction with a real form factor has been suppressed) but kept equivalent
to 5. Any error on code key, double input or lack of input stops the code.

1) in any case the real strengths for T=0 and T=1 are read in CVF(K,1,J), CVF(K,2,J)
and eventually ( code key 3, 4 or 5 ), the imaginary strengths in CVF(K,4,J),
CVF(K,5,J), where K is the kind of interaction and J the range. KTF(K,I,J) are
addresses and other informations, kind of density dependence for I=7.

2) if there is an interaction density dependent ( code key 2, 4 or 5), the density of
protons and of neutrons are calculated at each point of integration. The form factor
of the density can be given

a) as a function of the radius ( XM=0 ), at increasing values of the radius,
b) as a function of the density ( XM6=0 ) at decreasing values of the density; the

density of the nucleus is described by a Woods-Saxon form factor, of which the
parameters are read. It must be normalised to the units used for the input of
the densities.

c) or by the occupation numbers of the target.
3) for each interaction, instead of T=0 and T=1, are computed

a) the proton-proton direct and exchange interaction
b) the proton-neutron direct interaction
c) the proton-neutron exchange interaction

and the density dependent form factors are interpolated by a four points Lagrange
formula:

V (x) =
i=4∑
i=1

V (xi)
∏
j 6=i

x− xj
xi − xj

(VI – 1)
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where x is the density at the integration point and the xi the density at which the
interaction is given. Note that the result of the interpolation of the three interactions
written above is not exactly the same as the one of the interpolation of T=0 and T=1
in the previous versions if the geometric mean is requested.

4) the square root of the form factor is calculated if the use of the geometric mean is
requested ( I5=1 ), it is divided by 2 for the use of arithmetic mean ( I5¿0 ) or is twice
longer if value at middle point is requested ( I5¡0). I5 is stored in KTF(K,7,J) as
0,±1. A continuous square root of a complex form factor is obtained by introducing
a change of sign in the result when the real part of the form factor is negative and
the sign of its imaginary part changes.

5) the tables KTF(K,I,J) and CVF(K,I,J) are the address and the strength of the
interaction K with range J, the real parts in I=1,2,3 and the imaginary parts in
I=4,5,6.

6.3.4. – ILECT=3: Presentation of the results.

After the input of these data, the table of logarithms of factorials used for geometrical
coefficients is computed.

6.3.5. – ILECT=4: Optical model of the initial channel.

If the two body interaction is used to compute the free wave functions, and they are not
read on a tape, the subroutine LEC6 described below with ILECT=6 is called for the input of
the description of the target ( note that the description of the target is in terms of occupation
numbers, that is scalar products of creation and annihilation operators and not in term of
their tensor coupling to zero ) and the subroutine DIRZ is called to initialise the working array
for microscopic potentials and, eventually, compute the macroscopic potential read in LEC6.
In any case, some dimensions and reservations have to be computed. Then LECT calls the
subroutine FDIS with IG=1.

6.3.5.1. – b8 fdis.f

This subroutine is called first for the initial state ( IG=1 ) and after that for the
final state ( IG=2 ). This subroutine:

1) computes the center of mass energy and calls the subroutine POTE for the potentials.
2) computes wave number and Coulomb parameters and calls the subroutine FCOU

for the Coulomb functions. Write number of partial waves, masses, ... on fort.7 if
requested for use in DWBB98.

3) in a DO LOOP on the partial waves:
a) computes the Coulomb functions at two different points from their value and

the value of their derivative in a middle point. Formulae are obtained from a
five points derivation formula and three Numerov steps of integration with half
step size.

b) calls the integration subroutine INTE.
c) computes partial absorption and print them with the phase shifts if requested

( LO(33)=.TRUE. ) and write the phase-shifts on fort.7 if requested for use in
DWBB98.
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4) after this DO LOOP:
a) restore some informations if the free wave functions are computed with the two

body interaction ( LO(37)=.TRUE. ).
b) if requested ( LO(11)=.TRUE. ) and if the free wave functions are not com-

puted with the two body interaction, ( LO(37)=.FALSE. ) applies non-locality
corrections.

5) for the final state ( IG=2 ), if requested ( LO(10)=.TRUE. ), the Coulomb integrals
for Coulomb corrections are computed by calling the subroutine CORI.

6) if requested ( LO(35)=.TRUE.), the results of elastic scattering can be printed by
calling the subroutine SCEL for the initial state as well as for the final state.

6.3.5.2. – b9 pote.f

This subroutine computes an array VR(I,K) in which there are:

- the real central potential ( including Coulomb potential ) for K=1,
- the imaginary central potential for K=2,
- the real spin orbit potential for K=3,
- the imaginary spin orbit potential for K=4.

If the free wave functions are computed ( LO(37)=.TRUE. ) with a two body interaction
which includes ~L2 and/or (~L.~S)2 terms, there are five complex form factors in the working
array VS(I,K):

- a non derivative complex form-factor for K=3 and 4,
- a non derivative complex form-factor to be multiplied by β for K=11 and 12,
- a non derivative complex form-factor to be multiplied by β2 for K=15 and 16,
- a first derivative complex form-factor for K=27 and 28,
- a second derivative complex form-factor for K=39 and 40.

These addresses are those used in other subroutines in more general cases. In the absence
of ~L2 and (~L.~S)2 terms in the two body interactions, the three last form factor vanish.
In these case:

VR(I,1)=−VS(I,3)−2VS(I,11)
VR(I,2)=−VS(I,4)−2VS(I,12)
VR(I,3)=−2VS(I,11)
VR(I,4)=−2VS(I,12)

and VR is computed in this way in all cases.
If the free wave functions are not computed ( LO(37)=.FALSE. ) with the
two body interaction

1) this subroutine returns immediately for the final state if the potential is the same
as in the initial state ( IG=2 and LO(32)=.TRUE. ).

2) for external potentials ( LO(36)=.TRUE. ):
a) reads the ones given by points ( IEXT≤0 ).
b) computes the ones given has sums of Woods-Saxon for factors ( IEXT>0 ).

3) for standard potentials ( LO(32)=.FALSE. ): computes the four form factors.
4) adds the Coulomb potential to VR(I,1) in cases 2) and 3).

If the free wave functions are computed ( LO(37)=.TRUE. ) with the two
body interaction

1) if it is not for the final state ( IG=2 ) with the same potential as for the initial state
( LO(32)=.TRUE. ) saves the two body Coulomb interaction, and eventually reads
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a new one ( LOX(3)=.TRUE. ) and some other quantities ( number of partial waves,
limit of exchange ) if LOX(6)=.TRUE. .

2) if the potentials are not to be read on a tape ( LOX(5)=.FALSE. ),
a) computes them by calling the subroutines MULT and PTIP as done in sub-

routine DIRA for the transition to a 0+ level in a loop on the configurations
of the target ( the subroutine GEOM, DERI and DER2 are also used in this
computation ); note that the geometrical factor given by the function DCGS in
the subroutine DIRA reduces to unity in this case.

b) computes the Coulomb potential if it is not requested from the two body inter-
action ( LOX(2)=.FALSE. ),

c) computes the array VR from VS as described above,
d) if requested ( LOX(4)=.TRUE. ), write on tape the number of steps, the step

size and the arrays VS and VR ( storage of about 14 times the number of steps,
in single precision ).

2) if requested ( LOX(5)=.TRUE. ), the potentials are read on a tape, but the program
stops if the number of steps and the step size do not agree with those of the run.

3) if requested ( LOX(7)=.TRUE. ), the proton, neutron and total density are printed.
If requested ( LO(34)=.TRUE. ), the subroutine prints the potentials.

6.3.5.3. – ba inte.f

This subroutine is called for a fixed total angular momentum and parity. The logical
controls used in this subroutine are:

LOX(4)=.TRUE. to write potentials on a tape,
LOX(5)=.TRUE. to read potentials from a tape,
LOX(6)=.TRUE. if there is no microscopic exchange potential and
LO(8)=.TRUE. which indicates a plain computation with only central and spin orbit
potentials.

This subroutine uses the working array VS only for the microscopic optical model (
LO(37)=.TRUE. ). The main operations are:

1) the first part is an usual solution of the Schrödinger equation:
a) at the first call, for a microscopic potential including first and second derivative

term, the inverse of the second derivative terms in the Schrödinger equation is
computed. and the first derivative potential is multiplied by it.

b) the potential for this equation is computed in the memories reserved to return
the wave function. It is obtained from the microscopic potential in VS or from
VR if there are no derivatives. In the first case, it is multiplied by the inverse of
first derivatives. For microscopic calculations, this potential is kept in VS(I,K)
for K=37 and 38.

c) 2 + h2V/(1 − h2V/12) is computed and the equation is solved by Numerov
method.

d) phase shift and normalised solution are obtained. The subroutine returns for a
macroscopic potential.

2) the second part is the set up of the integro differential system of equations needed
with a microscopic potential ( LO(37)=.TRUE. ):

a) if the exchange is not included because it was not requested or because the
angular momentum is higher than the limit ( LOX(6)=.TRUE. ): α) if there
is no derivative terms, the code returns; β) if there are first derivative terms,
the wave function is derived by calling the subroutine DERI and the DWBA
effect of these derivative terms computed. If the effect is small, the subroutine
returns and will return for higher angular momenta ( LO(8) is set .TRUE. ).
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a) if the potential has not to be read on a tape ( LOX(5)=.FALSE. ), the subroutine
initialises to 0 the working array XA(I,J,K) of which the two first dimensions
are the number of steps:

- the non derivative terms will be in K=1 and 2,
- the first derivative terms will be in K=3 and 4,
- the second derivative terms will be in K=5 and 6,
- K=7 is used as a working array in the subroutine PTIV,
- the final system of integro differential equations will be built and solved in

K=7 and 8.

c) if exchange in the microscopic potential is requested ( LOX(6)=.FALSE. ) and
if the angular momentum or the J transfer is not too large, there is a DO
LOOP on the J transfer including a call to the subroutine MULT to compute
the multipoles and a nested DO LOOP on the configurations with a call to the
subroutine PTIP for the natural parity case or to the subroutine PTII for the
unnatural parity case. In this use and only in this use, the subroutines PTIP
and PTII call the subroutine PTIV to build the matrices XA. The subroutine
GEOM, DERI and DER2 are also used inside the nested DO LOOP. Note that
the geometrical factor which is essentially in the subroutine ECHA the product
of a 6-j symbol given by the function DJ6J and two 3-j symbols given by the
function DCGS reduces here to the square of the 3-j symbol between the total
angular momentum of the free wave j and the bound state j′ and the value J
of the transfer multiplied by −(2J + 1)/{(2j + 1)(2j′ + 1)}. If no contribution
is found, the exchange is suppressed by setting LOX(6)=.TRUE. .

d) if requested ( LOX(4)=.TRUE. ), the matrix XA is written on tape. This
storage is very large: it involves six times the square of the number of
steps in single precision for each total angular momentum and parity.

e) if the potential has to be read on a tape ( LOX(5)=.TRUE. ), the subroutine
reads it but set LOX(6)=.TRUE. if it finds a end of file.

3) the third part is the approximate resolution of the integro differential equations:
a) if needed, the non local potentials are multiplied by the inverse of the coefficient

of the second derivative computed in 1) a),
b) the direct potential is added to the matrix of exchange potential,
c) the non derivative, first derivative and second derivative terms are added in

XA(I,J,K) for K=7 and 8, using lowest order of difference on neighbouring
functions for first derivatives and second derivatives but not for the diagonal
second derivatives. These differences involve one point before and one point
after: the potentials are taken to be zero at the origin and the last point is
neglected.

d) the matrix XA(I,J,K) for K=7 and 8 is transformed into Numerov system of
linear equations and inverted without any pivot research ( we presume that the
next diagonal element is the largest ). The last row of the inverted matrix is the
approximate solution normalised to a real value unity at the first step beyond
the matching radius.

4) the last part is the refinement of the solution by doing at most four times the
following operations:

a) the approximate solution is derived once by calling DERI and twice by calling
DER2, taking into account in this second operation the value unity beyond the
matching point,

b) the error is computed, using the non derivative, the first and second derivative
potentials kept in XA(I,J,K) for K=1 to 6,

c) the approximate solution is corrected, using the inverted matrix in XA(I,J,K)
for K=7 and 8; if the norm of the correction is very small, the process is stopped.
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5) the solution is normalised as usual and the phase shift computed. If the norm of
the difference between this solution and the one obtained in 1) is small enough, the
computation of exchange is stopped by setting LOX(6)=LOX(8)=.TRUE. .

6.3.5.4. – bb ptiv.f

This subroutine is called by the subroutines PTIP and PTII when they are called
by the subroutine INTE to build the matrices for the exchange terms of a microscopic
potential, instead of executing the DO LOOP which computes the form factors for in-
elastic scattering. The 250 or 334 complex coefficients XX and all the indications for the
operations are transmitted by argument from the calling subroutines.

The differences with the subroutines PTCP and PTCI are:
1) the multipoles are explicitly built in the array XA(I,J,K) for K=7, including the

correction term present in Eq (VI – 12)
2) the non derivative, first derivative and second derivative terms are summed in

XA(I,J,K) for K=1,2, K=3,4 and K=5,6 respectively after multiplication by the
geometrical coefficients for the second particle; this geometrical coefficients differ
from those of the first particle, which are in the array XG, by the change α → −α
for natural parity and β → −β for unnatural parity ( these indications are trans-
mitted by the array XH from the calling subroutines ).
There is no two body Coulomb interaction in this subroutine.

6.3.5.5. – bc fcou.f

This subroutine and the subroutines called by it are a small modification of those
written at the Department de Calcul Electronique Saclay by: [13] BARDIN, C., DAN-
DEU, Y., GAUTIER, L., GUILLERMIN, J., LENA, T., PERNET, J.M., Note CEA-N-
906 (1968) and [14] BARDIN, C., DANDEU, Y., GAUTHIER, C., GUILLERMIN, J.,
LENA, T., PERNET, J.-M., WOLTHER, H. H., TAMURA, T., Comp. Phys. Comm.
3 (1972) 72. They compute the regular and the irregular Coulomb functions and their
derivatives for a given η and ρ for different values of the angular momentum L, starting
from L=0. In the original subroutines, the calculation of phase-shifts has been suppressed
except for L=0, the factorisation of some power of 10 has been changed from modulo 60
to modulo 15 in order to avoid overflow in the computation of Coulomb corrections on
a VAX computer. This subroutine calls FCZ0 to obtain Coulomb functions for L=0 and
computes the other ones by recurrence involving function and derivative at two values
of L. For the regular function, upwards recurrence is used if ρ < η +

√
L(L+ 1) and

downwards recurrence in the other case. Upwards recurrence is used for the irregular
function.

6.3.5.5.1. – bd fcz0.f

This subroutine computes the Coulomb functions for L=0. It calls the function
SIGM to obtain the phase-shift.

1) for η = 0, the subroutine returns sin and cos,
2) for η > 28 or η < −8, the subroutine calls YFRI to use Riccati methods.
3) for ρ ≥ ρm = 7.5 + 5|η|/3, where ρm is the asymptotic limit, the subroutine

calls YFAS to use asymptotic expansions.
4) for other values, the subroutine calls YFIR for the irregular function and:
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a) if 0 < η < 10 and ρ < 2 or η > 10 and η > (5ρ + 6)/7, the subroutine
uses regular series at the origin for the regular Coulomb functions.

b) in all the other cases, it uses expansion in Chebyshev polynomials for the
regular function: α) between the origin and ρ = m if η < 2.5 ( Clenshaw
expansion ), β) in the asymptotic region between ρm and ∞ if η > 2.5
and normalises by computing the regular function at ρm by calling the
subroutine YFAS for this value.

6.3.5.5.2. – be psi .f,bf sigm.f

These functions compute respectively the Coulomb phase-shift for L=0 and
the real part of the logarithmic derivative of the gamma function for a complex
argument.

6.3.5.5.3. – bg yfri.f

This subroutine uses:
1) a Riccati method at the origin if η > 0, ρ < 2η and ηρ > 12.
2) an asymptotic Riccati method η > 0, ρ > 2η + 20η

1
4 or −14.0625 < η < 0.

3) calls the subroutine YFCL for the asymptotic Clenshaw method if η > 0 and
2η < ρ < 2η + 20η

1
4 .

4) calls the subroutine YFCL for series at the origin if η > 0, ρ < 2η and ηρ < 12
or η < −14.0625.

6.3.5.5.4. – bh yfcl.f

This subroutine is called by YFRI. It uses an expansion on Chebyschev poly-
nomials in the asymptotic region or a MacLaurin series expansion near the origin
for which it needs the function PSI.

6.3.5.5.5. – bi yfir.f

Computes irregular Coulomb functions by Taylor expansion around the origin
or around the point R = 7.5 + 4/3η at which the functions and their derivatives
are obtained with the subroutine YFAS. For the expansion around the origin, this
subroutine calls the function PSI.

6.3.5.5.6. – bj yfas.f

Computes Coulomb functions with the asymptotic expansions.

6.3.5.6. – bk cori.f,bl corh.f

The subroutine CORI is called by FDIS only for ILECT=5, when the coulomb func-
tions are known for the initial and the final channel for long range Coulomb interaction.
These subroutines are taken from the code ECIS79 and are valid only if the product of
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the Coulomb parameter with the wave number is the same in the initial and in the final
state ( the subroutines with the same name used in ECIS88 are generalised to different
values of this product between the initial and the final state ).

The different part of this subroutine are:
1) first, the subroutine CORI calls the subroutine CORH to compute the integrals

from 0 to ∞ of the product of two different regular Coulomb functions with the
same angular momentum divided by r ( see [15] RAYNAL, J., Phys. Rev. C23
(1981) 2571 ) .

2) then, the integrals of the product of two different Coulomb functions with L=0 and
L=1 divided by r are computed with the method described in: [16] RAWITSCHER,
G. H., RASMUSSEN, C. H., Comput. Phys. Commun. 11 (1955) 183. A backwards
integration can be needed.

3) the integrals from 0 to the matching radius of two different regular Coulomb functions
divided by r are computed by backward recurrence. The integrals between the
matching radius and∞ are obtained by difference with the results of the subroutine
CORH. The values obtained in this way for L=0 and L=1 and the results of the direct
calculation using the method of RAWITSCHER and RASMUSSEN are printed to
check the accuracy of the calculation:

> INTEGRALS WITH REGULAR FUNCTIONS: (L+1) DIRECT BACKWARDS RECURRENCE
> 1 0.9773035046D-02 0.9773035021D-02
> 2 0.9758158329D-02 0.9758158318D-02

The integrals of products of irregular functions between themselves and with the
regular ones are obtained by upwards recurrence.

6.3.5.7. – bo scel.f

This subroutine is quite similar to the subroutine SCEF for which more details will
be given but simpler:

1) it compute the helicity phase shifts and the partial absorptions which are summed
to obtain the total reaction cross section,

2) for the angles given with ILECT=3, it computes the amplitudes with the reduced
matrices of rotation given by the subroutine EMRO and obtains the cross section,
the cross section divided by Rutherford’s cross section for charged particles, the
polarisation and the observable Q and print them,

3) it prints the total reaction cross section and calls the subroutine GRAL with indi-
cations read with ILECT=3 for the elastic scattering.

6.3.6. – ILECT=5: Optical model of the final channel.

Except for the input of Q instead of the laboratory energy, same as for ILECT=4 if the
optical model is changed ( LO(32)=.FALSE. ), but the subroutine FDIS is called with IG=2
instead of 1 . If the optical potential is the same ( LO(32)=.TRUE. ) and is obtained from the
two body interaction ( LO(37)=.TRUE. ) and the potential have been written on a tape for
the initial state ( LOX(4)=.TRUE., LOX(5)=.FALSE. ), they will be read from the tape for
the final state ( LOX(4)=.FALSE., LOX(5)=.TRUE. ).
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6.3.7. – ILECT=6: Description of the excited state.

The subroutine reads number of configuration, angular momentum and parity and calls
the subroutine LEC6 which uses subroutine XYIS.

6.3.7.1. – bn lec6.f

This subroutine:
1) reads the description of the configurations ( if called for the description of the target,

this description is in terms of occupation numbers, that is −
√

(2j + 1) times the
usual value ) and checks the validity of angular quantum numbers,

2) with the use of BCS ( LO(15)=.TRUE. ), calls the subroutine XYIS with ID=4 to
transform the data,

3) in case of different notation ( LOO(K)=.TRUE. ), calls the subroutine with ID=K,
4) with a macroscopic interaction ( LO(26)=.TRUE. ) reads the description of these

macroscopic form factors.

6.3.7.2. – bo xyis.f

This subroutine performs different transformations on the amplitudes for different
values of its argument ID which can have the values of 1 to 4. For ID=2 and ID=3, it is
a change of notations for particle hole creation operators to

AJMjpjh = (−)jh−mh < jpjhmp −mh|JM > a+
jpmp

ajhmh (VI – 2)

used in the code as given in Ref [2].
ID=1 transformation from isospin formalism, assuming that there are as many particle

states of proton and of neutron, with identical quantum numbers, the first half
being particles identical to the incoming one.

ID=2 transformation from ’phase 1 of Gillet’: the amplitudes must be multiplied by
(−)jp+ 1

2 .
ID=3 transformation from ’phase 2 of Gillet’: the amplitudes must be multiplied by

(−)Integer part of [(lp−lh)/2].
ID=4 transformation from BCS description of the particles.

6.3.8. – ILECT=7: End of the input stream for this calculation.

The subroutine LECT computes storage requirements, print maximum storage and calls
the subroutine DIRZ. This set of data, which involves only the input of ILECT must be read
even when reading data for a new J transfer.

6.3.8.1. – c1 dirz.f

This subroutine is called with ILECT=7, but also with ILECT=4 or 5 if the free
wave functions have to be computed with a microscopic potential ( LO(37)=.TRUE. ) .
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1) It prepares the working array VS(I,K) where the first dimension is the number of
steps and the second one is 68. It stores r = Ih in VS(I,1), r2 in VS(I,2) and 0
in VS(I,K) for K=3 to 42 and returns if there are no macroscopic contribution (
LO(26)=.FALSE. ).

2) If there are macroscopic contributions ( LO(26)=.TRUE. ), they are computed and
stored in VS(I,K) for the adequate value of K, from the data read in the arrays V
and NV in the subroutine LEC6. They can be:

a) interpolation on a form factor given by points by the same method already used
in subroutine LEC2,

b) Woods-Saxon form factors to some power or their derivatives,
c) for the Coulomb potential, the one of an uniformly charged sphere or the one

of a Woods-Saxon distribution of charge,
d) for the spin orbit potential, terms similar to those of the deformed spin orbit

potential in ECIS ( LO(28)=.TRUE. ).

6.4. – c2 dira.f

This subroutine computes the transition amplitudes in SOM(I,J,K) for the direct term. After
calling the subroutine MULT to obtain the multipole for the J of the transfer, there is:

1) a DO LOOP on the contribution of each of the configurations, successively for X and for Y.
The geometrical coefficient is obtained with the function DCGS and the subroutine GEOM, the
subroutines DERI and DER2 are used to derive the bound functions, the contribution of the zero
range interaction is computed in the subroutine PTI0, the contribution of finite range interaction
is computed in subroutine PTIP for natural parity transitions or subroutine PTII for unnatural
parity transitions. The working array VS(I,K) is used for the product of bound waves functions
and their derivative in K=43 to 48. Results are in the same array:

a) twelve non derivative complex form factors in K=3 to 26 to be used without coefficient and
with the 11 coefficients XG computed by the subroutine GEOM,

b) six first derivative complex form factors in K=27 to 38 to be used without coefficient and
with the 5 first coefficients XG,

c) two second derivative complex form factors in K=39 to 42 to be used without coefficient and
with the first coefficient XG.

2) if requested ( LO(14)=.FALSE. ) the subroutine DIRA print the existing form factors.
3) two nested DO LOOPs on the total angular momentum of the initial particle and the parity

which include the computation in VS(I,K) for K=43 to 66 of the product of the form factors with
the initial wave function and its derivatives obtained with the subroutine DERI and DER2, and
a DO LOOP on the final waves with:

a) the computation of geometrical coefficients with the function DCGS and the subroutine
GEOM,

b) if requested ( LO(21)=.FALSE. ) evaluation of the Coulomb corrections using the subroutine
CORA,

c) summation into VS(I,67) and VS (I,68) of the products of initial wave with form factors
multiplied by the geometrical coefficients computed in the subroutine GEOM and integration
of the result with the final wave.
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6.4.1. – c3 mult.f

For a value of the transfer J, this subroutine computes the arrays of multipoles AM(J,K,L)
of which the first dimension is the number of steps, the last one the number of ranges and the
second one is 18:

1) irregular multipoles ( Hankel functions of first kind for the variable ir ) for VJ−3 to VJ+3
in K=1 to 7,

2) regular multipoles ( Bessel functions for the variable ir ) for VJ−3 to VJ+7 in K=8 to 18.
The subroutine is assumed to have been called already for a value J’ given as argument (

at the first time, J’=−1 ). This subroutine do:
1) if there is a two body Coulomb interaction, the subroutine computes the irregular and the

regular Coulomb multipoles at the end of the array AM,
2) there are three nested DO LOOP’s on the range, on the integration points and on the J

values from the last one plus one ( J’+1 ) to the one requested in which:
a) if J=0, the multipoles for negative values are set to zero, the first regular multipole

and the first four irregular multipoles are computed; a backwards recurrence is used
to obtain the regular multipole, using the value for J=0 to normalise them,

b) if J 6=0, all the multipoles are shifted down: a new irregular multipole is easily obtained
by upwards recurrence, a new regular multipole has to be obtained by backwards
recurrence which has to be done only once for 5 values of J, due to the extra storage,

3) floating values of J, (2J+1) and square root of J(J+1) are stored in a common.

6.4.2. – ONE–BODY FORM FACTORS

There are three subroutines: PTIP, PTII and PTI0 to compute the one body form fac-
tors, respectively for natural parity transition, unnatural parity transitions with a finite range
interaction and zero range interaction for both parity. Each of them calls a subroutine, respec-
tively PTCP, PTCI and PTC0, which returns coefficients. When called from the subroutine
INTE, to compute exchange in a microscopic potentials, the subroutines PTIP and PTII call
the subroutine PTIV to build the matrix for the integro differential equation.

6.4.2.1. – c4 ptip.f

First, if called from ECHA, this subroutine sets to zero the form factors. Then,
it calls the subroutine PTCP to obtain coefficients for ~L2, ~L2 (~σ1.~σ2) and (~L.~σ1)(~L.~σ2)
interactions. After, there are two nested DO LOOP’s on the radial dependences and
the ranges ( no radial dependence is considered as the same radial dependence ). Inside
them:

1) a DO LOOP on the 14 interaction selects 7 complex strengths VA, taking into
account the isospin and if exchange calculation is going on or not,

2) if some value VA were found, 250 complex coefficients are computed, with expressions
in this subroutine for the scalar, the tensor and the spin orbit interaction or with
results of the subroutine PTCP for the other interactions,

3) if called from the subroutine INTE for the exchange term of a microscopic potential,
this subroutine calls the subroutine PTIV and ends the LOOP’s,

4) if not, the 250 complex coefficients are divided into 42 groups involving the same
operations, but with their results related to different form factors. These operations
are performed twice for a radial dependence with arithmetic mean. Indication for
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each group are DATA: beginning and end in the 250 array, which input to use (
product of functions or derivative ), power of r1 and r2, which multipole to use and
where to store the result ( non derivative, first derivative or second derivative form
factor ). There are six successive steps with results in different working arrays in
such a way that the steps of which the result is already obtained are skipped:

a) choice of the product of wave functions, or product of one wave function with
a derivative of the other and multiplication by the r1 radial dependence,

b) multiplication by a power of r1 ( positive or negative ),
c) product with a multipole; to obtain the integral for a multipole L of range µ:

f(r) =
∫ Nh

0

h
(+)
L (iµ r>)jL(iµ r<)g(r′)dr′ (VI – 3)

where r< is the smaller of (r, r′) and r> the larger, three successive sums are
done:

F (nh) =
n∑
j=1

jL(iµ jh)g(jh)

G(nh) =
N∑

j=n+1

1
h
h

(+)
L (iµ jh)g(jh)

f(r) = jL(iµ r)G(r) +
1
h
h

(+)
L (iµ r)F (r)

(VI – 4)

but the scalar interaction needs a correction:

fscalar(r) = f(r)− h2µ

12r2
g(r) (VI – 5)

which cancels out for tensor, spin orbit and other interactions,
d) multiplication by the r2 radial dependence,
e) multiplication by a power of r2 ( positive or negative ),
f) addition to the form factor.

The subroutine returns if it is called by the subroutine INTE for the exchange term
of the microscopic potential. In the other cases, the two body Coulomb contribution is
computed, if requested ( LO(16)=.TRUE. ).

6.4.2.2. – c5 ptcp.f

This subroutine returns if no ~L2 or (~L.~S)2 interaction is used. If they are used,
the subroutine computes with the coefficients XG the arrays S0(I,J,K), S1(I,J,K) and
S2(I,J,K) respectively for the non derivative, the first derivative and the second derivative
form factors.

I =1 for the ~L2 interaction,
I =2 for the ~L2 (~σ1.~σ2) interaction,
I =3 for the (~L.~σ1)(~L.~σ2) interaction,
J stands for the geometrical dependence on the other particle ( J=1 to 12 for

S0, J=1 to 6 for S1, J=1 to 2 for S2 ),
K stands for the multipole involved ( K=1 to 13 for S0, K=1 to 14 for S1,

K=1 to 3 for S2 ), but S1(I,J,8)=−S1(I,J,7), S1(I,J,K+8)=−S1(I,J,K) with
contribution of S2 for K=1 to 6 and S2(I,J,2)=−S2(I,J,1)−S2(I,J,3).

NOTES ON DWBA98/DWBB98 VI - 15 Jacques RAYNAL



Date 19/11/1999 56 DESCRIPTION of DWBA98/DWBB98

6.4.2.3. – c6 ptii.f

This subroutine is very similar to the subroutine PTCI and is called from the same
subroutines, except for the subroutine POTE. The differences with the subroutine PTCP
are:

1) it calls the subroutine PTCI instead of the subroutine PTIP, to obtain coefficients
for ~L2 (~σ1.~σ2) and (~L.~σ1)(~L.~σ2) interactions only.

2) if some value VA were found, 334 complex coefficients are computed, with expressions
in this subroutine for the scalar, the tensor, the spin orbit and the ~L2 interaction or
with results of the subroutine PTCI for the other interactions,

3) if not called from the subroutine INTE for the exchange term of a microscopic
potential, this subroutine acts like the subroutine PTCP but there are 59 groups of
operations instead of 42.

4) there is no Coulomb interaction.

6.4.2.4. – c7 ptci.f

Like the subroutine PTCP, this subroutine returns if no ~L2 or (~L.~S)2 interaction
is used. If they are used, the subroutine computes with the coefficients XG the arrays
S0(I,J,K), S1(I,J,K) and S2(I,J,K) respectively for the non derivative, the first derivative
and the second derivative form factors.

I =1 for the ~L2 (~σ1.~σ2) interaction,
I =2 for the (~L.~σ1)(~L.~σ2) interaction,
J stands for the geometrical dependence on the other particle ( J=1 to 11 for

S0, J=1 to 6 for S1, J=1 to 2 for S2 ),
K stands for the multipole involved ( K=1 to 18 for S0, K=1 to 19 for S1, K=1 to

4 for S2 ), but S1(I,J,10)=−S1(I,J,9)−S1(I,J,11), S1(I,J,K+11)=−S1(I,J,K)
with contribution of S2 for K=1 to 8.

6.4.2.5. – c8 pti0.f

This subroutine computes the form factors of a zero range interaction for natural
and unnatural parity transitions. As the exchange is equal to the direct contribution, this
subroutine is called only for the direct term, by the subroutine DIRA for a transition or
by the subroutine POTE for a macroscopic potential. The input value of the interaction
must take into account this point.

The structure of this subroutine is the same as the structure of subroutines PTCP
and PTIP. After a call to the subroutine PTI0 which returns the geometrical coefficients
for all the interactions, there is a DO LOOP on the radial dependences, in which 25
complex coefficients X0 are computed. They are divided into 9 groups of operations
involving:

1) operation on the product of wave functions for the six first groups, or on the particle
wave function for the three last ones,

2) eventually, multiplication by the radial dependence,
3) division by r2 for the four first groups and by r for the others,
4) simple or double derivation, using the subroutine DERI or the subroutine DER2 for

the last five groups and multiplication by the hole function for the last three groups,
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5) eventually, multiplication by the radial dependence,
6) division by r2 for the groups 4,6 and 9 and by r for the groups 3, 5, 7 and 8,
5) addition to the form factors.

6.4.2.6. – c9 ptc0.f

This subroutine returns the coefficients needed in the subroutine PTI0.

6.4.3. – ca cora.f

For given angular momenta, this subroutine returns the four coefficients needed in the
asymptotic region, if its last argument is .TRUE. ( see Ref [10] ). When this last argument is
.FALSE., it returns also the four other coefficients needed for finite integrals. This is limited
to a transfer of angular momentum 4. There are special formulae for the on-shell corrections
which are necessary only for dipole excitation.

6.4.4. – DERIVATION

The two subroutines DERI and DER2 computes first and second derivatives, without
dividing the result by the step size or its square. In fact, through the code, the coefficients of
first and second derivative form factors are divided by this power of the step size.

6.4.4.1. – cb deri.f

Computes h d
dr of a function where h is the step size. It assumes the value before

the first to be zero and needs at least 7 values. It uses:

xi =
1
60
[
45(yi+1 − yi−1)− 9(yi+2 − yi−2) + yi+3 − yi−3

]
(VI – 6)

but for the first three points:

x1 =
1
60
[
− 77y1 + 150y2 − 100y3 + 50y4 − 15y5 + 2y6

]
x2 =

1
60
[
− 24y1 − 35y2 + 80y3 − 30y4 + 8y5 − y6

]
x3 =

1
60
[
45(y4 − y2)− 9(y5 − y1) + y6

] (VI – 7)

and for the last three points ( n being the last one ):

xn−2 =
1
60
[
yn−6 − 8yn−5 + 30yn−4 − 80yn−3 + 35 ∗ yn−2 + 24yn−1 − 2yn

]
xn−1 =

1
60
[
− 2yn−6 + 15yn−5 − 50yn−4 + 100yn−3 − 150yn−2 + 77yn−1 + 10yn

]
xn =

1
60
[
10yn−6 − 72yn−5 + 225yn−4 − 400yn−3 + 450yn−2 − 360yn−1 + 147yn

] (VI – 8)
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6.4.4.2. – cc der2.f

Computes h2 d2

dr2 of a function where h is the step size. It assumes the value before
the first to be zero and needs at least 7 values. It uses:

xi =
1

180
[
270(yi+1 + yi−1)− 27(yi+2 + yi−2) + 2yi+3 + 2yi−3 − 490yi

]
(VI – 9)

but for the first three points:

x1 =
1

180
[
− 147y1 − 255y2 + 470y3 − 285y4 + 93 ∗ y5 − 13y6

]
x2 =

1
180

[
228y1 − 420y2 + 200y3 + 15y4 − 12y5 + 2y6

]
x3 =

1
180

[
270(y4 + y2)− 27(y5 + y1) + 2y6)− 490y3

] (VI – 10)

and for the last three points ( n being the last one ):

xn−2 =
1

180
(2yn−6 − 12yn−5 + 15yn−4 + 200yn3 − 420yn−2 + 228yn−1 − 13yn)

xn−1 =
1

180
(−13yn−6 + 93yn−5 − 285yn−4 + 470yn3 − 255yn−2 − 147yn−1 + 137yn)

xn =
1

180
(137yn−6 − 972yn−5 + 2970yn−4 − 5080yn3 + 5265yn−2 − 3132yn−1 + 812yn)

(VI – 11)

6.4.5. – GEOMETRICAL COEFFICIENTS

Besides the function DCGS already called by INTE and the subroutine GEOM, there is
also the function DJ6J, called only in the subroutine ECHA.

6.4.5.1. – cd dcgs.f

This subroutine computes special Clebsch-Gordan coefficients for which the formula
involves no summation. They are the ones with magnetic quantum numbers all zeros or
1
2 , 0, − 1

2 . One of the arguments of the function is the array of logarithms of factorials.
The quantum numbers are given by their integer double value.

6.4.5.2. – ce geom.f

With the values AA= α and AB= β computed in the calling subroutine POTE,
INTE, DIRA or ECHA, passed in the common /GABJ/, computes the Xi in the array
XG(11) in the same common:

X1 = α

X2 = α2

X3 = αβ

X4 = β

X5 = (α2 − 1)β

X6 = β2

X7 = α3

X8 = αβ2

X8 = αβ2

X10 = (α3 − α)β2

X11 = (α3 − α)β
(VI – 12)
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6.4.5.3. – cf dj6j.f

This function computes the 6-j coefficients needed for the exchange. Like the function
DCGS, one of its argument is a table of logarithms of factorials and the quantum numbers
are given by their integer double value. This subroutine is also used in DWBB98.

6.5. – cg echa.f

Inside five nested DO LOOP’s on the multipoles, on the configurations, on the contributions of
the amplitude X and Y, on the total angular momentum of the initial wave and on its parity, there is:

1) the computation of the form factors:
a) the geometrical coefficient is obtained with the function DCGS and the subroutine GEOM,
b) the particle wave function is multiplied with the initial wave function or its derivatives

obtained with the subroutines DERI and DER2,
c) the form factors are obtained with the subroutine PTIP in the natural parity case and the

subroutine PTII in the unnatural parity case,
d) the form factors in VS(I,K) for K=3 to 26 ( or less ) are multiplied by the hole wave function;

the other ones are multiplied by the first or the second derivative of the hole function obtained
with the subroutine DERI or DER2 and the result added to VS(I,K) for K=3 to 14 for the
first derivative, K=3 to 6 for the second derivative.

2) a DO LOOP on the final waves:
a) the geometrical coefficient is obtained with the functions DJ6J and DCGS and the subroutine

GEOM,
b) the form factors are summed into VS(I,K) for K=43 and 44,
c) the integrals with the final wave are done and the result added to SOM(I,J,K) which contains

already the result of the direct calculation when this subroutine is called.

6.6. – ch scef.f

This subroutine prints results at equidistant angles. The input is the array of integrals SOM(I,J,K)
in which K is the total angular momentum of the initial wave plus one half, J corresponds to the total
angular momentum of the final wave, starting from one for the lowest one and the real parts are stored
in I=1 and 3, the imaginary parts in I=2 and 4 for the two integrals. After the output of the title of
the run, this subroutine writes the amplitudes on fort.7 for DWBB98 if requested. Then there is:

1) the transformation to helicity amplitudes, which involves some 3-jm symbols. The one with
magnetic quantum numbers 1

2 , 0,−
1
2 are given by the function DCGS and the other computed

from it by recurrence. The total cross section is computed in this part.
2) for equidistant angles:

a) the reduced rotation matrix elements are given by the subroutine EMRO and half of the
amplitudes are computed, taking parity into account,

b) cross section, analysing power, polarisation, spin-flip and the observable Q are computed,
c) if there is a sum on J transfers, the observables are added to the result of previous compu-

tations separately without and with exchange,
d) these observables are printed.

3) the total cross section is printed and the subroutine GRAL is called.
4) for the last value of a sum on J transfer, the total observables are printed and the subroutine

GRAL is called for them.
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6.6.1. – ci emro.f

This subroutine computes a series of reduced rotation matrix elements with increasing
angular momentum and the same magnetic quantum numbers. It uses upwards recurrence
relations. In fact, there are three independent computations: one if none of the two magnetic
quantum number s are zeros, the second if one of them is zero and the third if both of them
are zeros.

This subroutine is also used by DWBB98.

6.6.2. – cj gral.f

This subroutine prints graphs of cross-sections or polarisations. It is called by the subrou-
tine SCEL for the elastic scattering or by the subroutine SCEF for the transition. Indications
read in subroutine LECT with ILECT=3 are transmitted by argument. There are two parts:

1) the logarithmic graph of the differential cross section, avoided if the number of logarithmic
scales is zero or too large. For elastic scattering, the cross section divided by Rutherford’s
cross section is plotted ( cross section itself without charge ).

2) the graph of polarisations which can include the polarisation and the observable Q for elastic
scattering, the asymmetry, polarisation, spin flip and observable Q for the transition. The
choice is given in binary representation by a data.

SUBROUTINES OF DWBB98

There are 11 subroutines in DWBB98, including cf dj6j.f and ci emro.f already used by
DWBA98. Many of them are simplification of subroutines used in the code ECIS.

6.7. – d1 dwbb.f

This MAIN programme reads a title and two logical indicating to use or not relativistic kinematics
and to give results in the laboratory or the center of mass system. It reads also angles for the result.
Then

1) it calls DEPH to know parities and spins of the initial and final states and which observables to
compute.

2) it calls OBSE to prepare the computation of observables.
3) it reads sets of phase shifts of which the two first must be for elastic scattering:

Jacques RAYNAL VI - 20 NOTES ON DWBA98/DWBB98



DESCRIPTION of DWBA98/DWBB98 61 Date 19/11/1999

a) for elastic scattering, it reads masses, wave number coulomb parameter and phase–shift for
L = 0, computes coulomb phase–shifts for L 6= 0 and calls LECA.

b) for inelastic scattering, it reads J–transfer, parity, dimension and calls LECB.
4) on end of data, the subroutine SCHE is called to transform the data into helicity formalism.
5) then the subroutine RESU is called and the computation is stopped on its return.

6.7.1. – d2 deph.f

There are two parts with comment cards before each to explain how are stored informations
on each amplitude. The levels taken into account are those which are coupled plus those which
are not coupled but of which an angular distribution is wanted.

1) In the first one, after reading spins and parities, the amplitudes are counted and arrays of
quantum number stored. Indications to compute only once the reduced rotation matrix
elements when they can be used for more than one amplitude to a sign are also stored.

2) In the second part, indications on the observables requested are read. There are 16 standard
observable and any other can be requested by a negative number.

6.7.2. – d3 obse.f

This subroutine computes for all the observables the indications for the do-loops and the
geometrical coefficients which will be needed in d8 scat.f to obtain the observables requested.

1) A first part reads indications for non standard observables identified by a negative number
read in d2 deph.f and transform them into tensor notations.

2) A second part computes geometrical coefficients and do-loop limits. This part is run twice,
the first time to obtain storage requirements, the second one for effective computation.

6.7.3. – d4 leca.f

This subroutine reads elastic phase shifts if some are given. They are stored only for the
first set and if there are requested in the computation.

6.7.4. – d5 lecb.f

This subroutine reads inelastic results and adds to the ones previously read. The parity
of the initial state is taken as positive. It uses the subroutine cf dj6j.f to restore the quantum
numbers from the notation as J–transfer.

6.7.5. – d6 sche.f

Then, for each total angular momentum and parity, the subroutine computes by recurrence
the Clebsch-Gordan coefficients needed to go to the helicity formalism, transforms the scattering
coefficients. Only the product of the parities of the initial and the final state is taken into
account.
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6.7.6. – d7 resu.f

This subroutine prints results after averaging on angles or transforming to laboratory
system if requested. It calls the subroutine d8 scat.f for results at some angle and d9 gral.f to
draw graphs of the cross–section or the polarisations.

6.7.7. – d8 scat.f

This subroutine computes the observables. In a first part it computes the helicity ampli-
tudes with the reduced rotation matrix elements obtained by a call to subroutine ci emro.f.
A simple loop gives the cross-section in all cases and the vector polarisation and analysing
power for spins 1/2 and 1. The other observables involve do-loops and coefficients which were
computed in subroutine d3 obse.f and are used after transfer in some memories in equivalence.
If observables are in the Laboratory system or with axis of quantification along the incoming
direction, the collision matrix is rotated as indicated for the code ECIS or the angle −θ.

6.7.8. – d9 gral.f

Subroutine very similar to cj gral.f.

6.8. – SUMMARY

The main routine calls the assembler subroutine DWBA which calls the subroutine CALC, or the
main routine calls directly CALC. There is no return from CALC. The calls between subroutines are
given by the following table, in which the subroutines called by CALC are given in the first column
and the names of the subroutines called by a subroutine are in the next column, on the same line or
below:
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DWBA98: DWBA calls CALC, which calls (beginning)

LECT INPA
---- INPB
---- LEC1 STDP MEMO
---- ---- MEMO
---- LEC2 MEMO
---- FDIS POTE DERI
---- ---- ---- DER2
---- ---- ---- GEOM
---- ---- ---- MULT
---- ---- ---- PTIP PTCP
---- ---- ---- ---- PTIV
---- ---- ---- PTI0 DERI
---- ---- ---- ---- DER2
---- ---- ---- ---- PTC0
---- ---- INTE DCGS
---- ---- ---- DERI
---- ---- ---- DER2
---- ---- ---- GEOM
---- ---- ---- MULT
---- ---- ---- PTIP PTCP
---- ---- ---- ---- PTIV
---- ---- ---- PTII PTCI
---- ---- ---- ---- PTIV
---- ---- FCOU FCZ0 SIGM
---- ---- ---- ---- YFRI YFCL PSI
---- ---- ---- ---- YFAS
---- ---- ---- ---- YFIR PSI
---- ---- ---- ---- ---- YFAS
---- ---- CORI CORH MEMO
---- ---- ---- FCOU FCZ0 SIGM
---- ---- ---- ---- ---- YFRI YFCL PSI
---- ---- ---- ---- ---- YFAS
---- ---- ---- ---- ---- YFIR PSI
---- ---- ---- ---- ---- ---- YFAS
---- ---- ---- MEMO
---- ---- SCEL EMRO
---- ---- ---- GRAL
---- ---- ---- MEMO
---- ---- MEMO
---- LEC6 XYIS
---- ---- MEMO
---- DIRZ DERI
---- HORA STIM
---- MEMO
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DWBA98: DWBA calls CALC, which calls (end)

DIRA MULT
---- DCGS
---- GEOM
---- DERI
---- DER2
---- PTIP PTCP
---- ---- PTIV
---- PTII PTCI
---- ---- PTIV
---- PTI0 PTC0
---- ---- DERI
---- ---- DER2
---- CORA
---- HORA STIM

ECHA MULT
---- DCGS
---- GEOM
---- DJ6J
---- DERI
---- DER2
---- PTIP PTCP
---- ---- PTIV
---- PTII PTCI
---- ---- PTIV
---- HORA STIM

SCEF EMRO
---- GRAL
---- DCGS
HORA STIM

DWBB98: DWBB calls

DWBB DEPH
---- OBSE
---- LECA
---- LECB DJ6J
---- SCHE
---- RESU SCAT EMRO
---- ---- GRAL
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