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RSIC CODE PACKAGE PSR-338 

1. NAME AND TITLE 
DWBA91: Code System for Fully Microscopic Analyses of Nucleon-Nucleus Scattering. 

AUXILIARY PROGRAM 
DWBA9 1 - Interaction: generates input data for DWBA91 for the two-body interaction for a 

given energy based on the energy and density dependent effective 
interaction table. 

2. CONTRIBUTORS 
Service de Physique Theorique, CEA Saclay, Gif-sur-Yvette, France, and Theoretische 

Kernphysik, University of Hamburg, Hamburg, Germany through the NEA Data Bank, Issy-les- 
Moulineaux, France. 

3. CODING LANGUAGE AND COMPUTER 
Fortran IV; VAX, CRAY, and IBM mainframe (P00338/MNYCP/OO). 

4. NATURE OF PROBLEM SOLVED 
Direct interaction reaction cross sections and angular distributions are calculated. The relativistic 

cinematics option is included. 

5. METHOD OF SOLUTION 
The distorted wave Born approximation is used. DWBA91 includes a fully microscopic nonlocal 

optical model obtained with the description of the target by its occupation numbers and with the two- 
body interaction for the initial and final distorted waves. The effective interaction is input as a quasi 
potential operator which generates plane wave t-/g-matrix elements equal to those generated from some 
nucleon nucleon potentials. The effective interaction may comprise central, tensor, (LS), L**2 and 
(LS)**2 operator components with Yukawa form factors and complex density dependent strengths. 

Minimum relativity makes allowance for DWBA91 to be used for projectiles at low and medium 
energy. 

6. RESTRICTIONS OR LIMITATIONS 
None noted. 

7. TYPICAL RUNNING TIME 
Sample problem execution times on a VAX 6000-420 with a 20% load percentage: 

Sample problem 1 4 minutes 46 seconds 
Sample problem 2 19 minutes 9 seconds 
Sample problem 3 26 minutes 39 seconds 

8. COMPUTER HARDWARE REQUIREMENTS 
The codes run on Vax, IBM, Cray and CDC computers. Sample problem 3 requires slightly more 

than 15000 blocks of free space for the creation of scratch file (logical unit 8 - FOROO8.DAT). 

. . . 
111 



9. COMPUTER SOFTWARE REQUIREMENTS 
A Fortran compiler is required. DWBA91 was tested at RSICC using VAX Fortran on a VAX 

6000-420 running VMS 5 5-2. 

10. REFERENCES 
J. Raynal and H. V. von Geramb, “A New Microcscopic DWBA Code Version and Some 

Applications” (1992). 
J. Raynal, “Notes on DWBA91” (September 9, 1991). 

11. CONTENTS OF CODE PACKAGE 
Included are the referenced documents and 1 DS/HD (1.2 MB) diskette which contains the source 

code, sample input/output, and a README.RSI file which describes the installation and operation of 
DWBA91 and DWBA91 - Interaction written in DOS compressed self-extracting files, 

12. DATE OF ABSTRACT 
October 1993. 

KEYWORDS: NUCLEAR MODELS 
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A New Microscopic DWBA Code Version 
and Some Applications 

J. Raynal 
Service de Physique Theorique, CEA-Saclay 

91191 Gif-sur-Yvette Cedex, France 

H.V. von Geramb 
Theoretische Iiernphysik, Universitat Hamburg 

A new level of fully microscopic analyses of nucleon-nucleus scattering has been reached 
with the version DWBASl[l]. A s compared to versions prior to 1990, a fully microscopic 
nonlocal optical model for the initial and final distorted waves has been included which 
makes use of a complex, energy and medium dependent effective interaction. The ef- 
fective interaction is input as a quasi potential operator which generates plane wave 
t-/g-matrix elements equal to those generated from some nucleon nucleon potentials. 
The effective interaction may comprise central, tensor, (LS), L2 and (LS)* operator 

*components with Yukawa form factors and complex density dependent strengths. All 
features of the older versions of DWBAxx are still available as options despite the fact 
that many parts of the program have been rewritten or restructured. Minimum relativ- 
ity makes allowance for the code to be used for projectiles at low and medium energy. 

In this contribution we distinguish studies of the elastic scattering with the nonlocal 
optical models as compared to others with local microscopic and phenomenological 
optical models and studies of inelastic scattering. 

The computations show that elastic scattering differential cross sections and spin 
observables are better reproduced with the nonlocal optical model as compared with 
local equivalents. The major change comes from the inclusion of L* and (LS)* opera- 
tors in the effective interaction. With the new parametrization scheme [2] we greatly 
improved the reproduction of reference half-off shell t-/g-matrices in all partial waves 
with e < 5 and eliminated problems with the unitarity which were present in older 
formulations of effective interactions. Inelastic scattering uses the same effective inter- 
action as transition operator and we made applications to some benchmark transitions 
in “C. Cross sections and angular distributions of spin observables for r’C(p,p’), l+, 
T=O,l at 12.71 and 15.11 MeV were computed and compared with some data at 185, 
200, 318 and 400 MeV. The contributions from the L’ and (LS)* operators to the spin- 
flip transitions are unexpectedly large. We attribute this to malfunction in very high 
partial waves of the effective interaction which the program generates and whose limits 
are only determined from the cutoff in partial waves and exchange multipoles. Similar 
results and conclusions can be drawn from calculations done for ‘*Ca and *08Pb. The 
program is not restricted to the here used form of the effective interaction but other 
parameterizations, which may be favored by a user, can be used as well. 

1. J.Raynal, for inquiries use the E-mail address: 
R-4YNAL@POSEIDON.SACL,4Y.CE:1.FR 

2. H.V. von Geramb, K. Amos, L. Berge, S. Brautigam, H. Kohlhoff and I. Ingemars- 
son, Phys.Rev. C44 (1991) 73. 
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1. - DWBAlO 

The codes D\vBXss computes rile inelastic scatterin, g of nucleons ou a target of which the exited state 
is described microscopically by particle-hole configurations, with a t.wo body inreracciou. It. is based ou the 
‘helicit? formalism of the multipole espausion of this interaction. 

1.1. - THE TWO HELICITY FORMALISMS 

The expansion of a distorted ivave is usually written as: 

where u is the spin projection of the in going plane wave on an arbitrary asis and 6’ its projection ac 
the point F on the same ask 

1.1.1. - DESCRIPTION OF A DISTORTED W.4VE 

If we choose this arbitrary asis along z, we introduce the usual helicity defined in [I] >I. 
JACOB and G. C. WICK, .%nu. of Phys. 7 , 404 (1959). with ,\ instead of G: 

(I - 2) 

The helicity forinalisin for multipole espausion M defined in [2) J. RXYNBL, Nucl. Phys. 
-497, 593 (19GT). aud also described in [3] J. RXYXXL, in The structure of Xuclei (IAEA, 
\?enna, 192). consists in a similar projection of Id > along F. If +,, Br and 15~ are the Euier 
angles between a frame with its z-axis along h and a frame with it.s z-asis along F, this wave 
function may be written as: 

where the helicity functions 2: x, are: 

=j -x,x’ = y{zl=j-l,;(kl.) + i(-)~-~‘z,,ji~,j(hr)} 

They do uot have a well-defined parity. 

(I - 3) 

(1 - 4) 

1.12. - DESCRIPTION OF A BOUND STATE 

The usual description of the bound state of a spin 4 particle wirh orbital angular momentum 
I, a total angular momentum j and its projection 171 on the quantisacion asis is: 

KOTES ON Dl\‘BXSl I- 1 Jacques R-AYN.iL 
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1.3.1. - SYMMETRIES OF THE MULTIPOLE EXPANSION 

Some symmetry properties are also required, in general, of the two-body force. In order 
to srudy their consequences. it is simpler DO choose the asis of quantisation along 1~1 t.ogether 
kth a frame of reference for particle 2 given by the Euler angles (0,0,0) and obtain: 

The action of the parity operator P is the same as for standard helicity because 7: and impulsion 
behave similarly: 

Time reversal invariance depends on the nature of the operators: 

(I - 13) 

where 77 = -1 for a derivative term or an espression odd in t.he permutar.ion of X and A’. 

1r’hen the two nucleons are identica!: 

\.‘J x;~:,x,x&L ‘2) = ~~~<,;,,:AIP: 1) (I - 15) 

For a given value of J, the matris V~;~:,~,x,(l, 2) can be written on the basis of Kronecker 
products of 2 x 2 matrices. They are two even matrices: 

and t.wo odd ones: 

If parity conservation applies, the two-body interaction can be separated into an even part.: 

(I - 18) 01 10 
+b’q1,2) 1 o G, o 1 I /I 

and an odd part: 

(I - 19) 

If the two particle are identical: 

uJ(1,“) = uJ(2. l), bJ( 1,2) = b’.‘(.Z, 1) cJ(,l, 2) = cJ(2,l). 

cJ(1,.2) = cJ(2, l), E’( 1,“) = dJ(.2> 1) f-‘&4) = jJ(.2, l), 
(I - 20) 

SOTES OK D\T’B=191 I- 3 Jacques RAY’NXL 
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I and for its odd part: 

d-‘(l.“) = 

. . _. 
. 

: : 
: 

: 
.:. 
. . fJ(l,‘z 

: 
: 
‘: 

C J-l 1 J-!-2 
(,2J - 1)(2J + 1) tj-?(l’lt~2) + c2J _ 1jt2J+ 3jtih,d - c2J i 1jt2J +31r;,2(p,,r?) 

> 

) = -[?-f + r3,( $$+J-l(i’~, rz) + &5+&l, Q)} - 1‘11’2 

(J - l)(J + 1) lOJ’+ 1OJ - 9 J(J + 2) 
(2 J _ I)(2 J + 1) L’J-3(rl: ‘2) - (‘z J _ 1)(‘2 J + 3) vJ(rl~ ‘d + (‘ZJ i 1jt2 J + 3) vJ;m 49, r?,} 

(I - 29) 

‘. 1.3. - Me4TRIX ELEMENT BETWEEN BOUND STATES 

: 
: 

After integration over au&, using the helicity formalism for t.he interact.ion and the bound 
stat.es: 

< j;fniI < j~tdlV(l,‘L)ljlmr > Ij2rn? > 

fii;ilj2 
(I - 30) 

J,P 

1.3.1. - PARTICLE-PARTICLE AND PARTICLE-HOLE MATRIX ELEMENT 

The antisymmetrised particle-particle matris element is: 

C( ) J+jlij:(2Jl+ 1) 
{ 

A j2 J = - 
J’ ji ;ii J’ 

SOTES OX DWBX91 Jacques R-1YNXL 
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and when the matris is non diagonal, the geometry is: 

[I - 30) 

Recurrence relations between Clebsh-Gordon coefficients gives: 

(I - 40) J 
Qjd; 

= (,)l,+j,-i (A i- 3) + (-1 jti-ji+J(ji + 4) 

dm=i 

.: I 

.” 

. . . 

which can be expressed whiah the eigenvalue 7 of r5 as follo\vs: 

J Oj,j: = 

I 

for a natural parity 

for an unnatural parity 
(I - 47) 

or with the quantum number K of Dirac equation because x = 7 + 1. 

The coefficient Gylj; is given by the summed formula which holds for 3-j coefficients of 
which the magnetic quant.um numbers are zeros: 

: 

‘, 
- .; (I - 42) G;j, = (-f’( ‘+“*) y(J i j _ ;yy?,yj;;(j + j, _ J 

where .:. 

(I - 43) 

1.3.3. - PARITY OF THE PARTICLE-HOLE MATRIX ELEMENT 

FVith the elementary matrices? the sum on the helicities of one particle involves two terms 
i, and the geometrical coefficient is: 

(I - 44) 

where ‘7 is the symmetry of the matrix. 

Therefore, there are two kind of particle-hole matrix elements 

the “natural parity” matrix elements for which 11 + 1; + J is even. rlll the contri- 
bution of the interaction comes from its even part: 

XOTES ON DWBX91 I- 7 Jacques RAYYAL 
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, 
and for the odd part, the multipoles are: 

In the even part, t.he multipole b is the sum of a derivative terns: 

t&l, 2) = m 
[( 

1; 
2J+l - .J(2 J + 1) (z - 2) (‘ll’;-l f e?b>+,)] 

(I - jl) 

(where cl = J + 1 and cZ = J, but where ci = J - 1 and c2 = J + 2 if the functions are 
multiplied by r as usual) 
and a term odd for the permutation of jl and j? with j; and jb: 

. . .I 

I(j?-t$)-(-)jz+j;iJ(j~+~) 
(I - 22) 

2aj j, 
[L/J - ?{&&I + &I,;+,}] 

2 2 

the departure from the previous geometry appears by this terms and the presence of Q: iu the 
“natural parity’ two-body form factor uJ and in the “unnatural parity” ones cJ and 6’. 

There are five one body form factors for a natural parity escitarion: 

FLs = -J(~.) + B(~) (yi - ?f) +-41(1,)(7i -Tf)’ 
dq7TT) J(J + 1) + Bz(r)(j.i -t -(f i 2) 

+ -wP 
- -/f)(7i + ^,f + 2) 

(I - 53) 
J(J + 1) 

an oiily rlxee for unnatural parity escitacion: 

(I - 54) 

1.4.2. - EXPANSION FOR SMALL RANGES 

In fact, the two body interaction is separated into four parts which are respectively 
tiS=G,T=O)* 1’:.5=1.T=Oj, F’~S=O,T=l) and \.~~=r,~=r). The tensor and the spin orbit interactions 
are pure S = 1. For a central interaction: 

(I - 55) 

for identical paxicles, l,?=c do not contribute 

XO’TES ON D\VBX91 I-9 Jacques R-1’1TN.1L. 
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‘Thi; is easily understood in relative coordinates. For a relative augular inomentum L, the 
syminetrised states are those xith i +- S i T odd. The zero-range implies L = ci aud the nest 
terul is L = I. As the spin orbit is S = 1, its zero-rause linlic must. be T = 1 because it is for 
L = 1. 

1.4.4. - COMP.4RISON WITH MACROSCOPIC MODELS 

When the excited state is collective, there are many contributions with different values of 
7P and yh which must cancel out. \..>(I’) is the transition form factor. using: 

CG~~j,~f~(r){~fh(l,)} = ${$L'J(~I), 

me get for a natural parity stat.e, taking the Hermitian part: 

(I - 62) 

to be compared to the macroscopic result: 
, 

{ J(J i 1) - (yi - i.1 )(-Ii - -/f +N] 

(I - 64) 
and for au unnatural parity state: 

In the peculiar case J = 0 aud natural parity, sumnation over all the uucleons nmst lead 
to the optical modal. The inreraccion is: 

(I - 03) 

where the factors ; disafJpear after suniniaciou on two complete shells with the same angular 
moinencum 1 aucl the same radial functions. 

1.5. - APPLICATION TO NUCLEAR REAC’?IONS AND CODE DWBA70 

For au incoming particle in the direction & witlithe helicity pi ou a uucleus without spin described 
by QI* aud au outcoming particle in the direction kf with an helicity ef , the residual nucleus having 
the helicity pf described by a particle j, aud a hole jh, QL, ’ the reaction is described by the helicity 
amplitudes: 

(I - G7) 

where ~‘i and vf are the velocities in the initial and the fiual state. The norinalisation has been chosen 
in such a may that: 

I- 11 Jacques R4YXAL 
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(Z-3) for identical and different particles. Central and (L.S;) inoeractious can have zero range 
limit. 

In fact, in these calcuiaGons we use only Yukawa fcmn factors because its multipole espau- 
sion: 

is such that rhe double integral over 1.1 and ~2 reduces to three single integrals. 

(I - 73) 

i. 

XOTES OX DkYBX91 I- 13 Jacques RAY?!AXL 
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orbit interactiou pi they were used in DWB.470. Yotations for Skyrrne force are usually 4;~ those of 
D1VB.470. 

The fl term of ehe Skyrrne force includes a double derivative on the wave function in relative 
coordinates. So, it acts in relative L = 0 scaLe and is the nest term to the zero range scalar interacaion: 

The tz term of the Skyrme force includes a single derivative on the wave function in relative 
coordinates on r.he right and on the left. So, it acts in relative L = 1 and: 

Similar espressions are obtained for the zero range limit of the censor interaction. There are two 
parts: the tensor interaction in relative L = 1 state, which is T = 1 and the tensor interaction between 
relative L = 0 and relative L = 2 sLace, which is T = 0: 

VT j I.-T,j-limit, + VT,!-liEit 
‘,S-l,T-0) (S-l.T-1) (II - 9) 

One kas to take into account that this last interaction is the limit of f-&r acting in 
relative coordinates. 

YO’TES 03 DM’B.191 II - 2 Jacques RAYXXL 
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3.f.2. - STRUCTURE OF THE MULTIPOLES 

1Vith these notadons: the spin-orbit oue body form factor reads: 
: 

._ .’ 

: 
for a natural parity escitation and: 

Fdr) = C(r) + DYE i Cl(l’)YZ (III - 3) 

for an unnatural parity escicarion. Note that there is a difference of a factor Jm with 
the previous definition for the form factors B(,r), 83(r) and D( I’) and a factor J(J + 1) for 
-al(r), -la(r) and C,(r). 

The lnultipoles of an interaction for the computation of a particle hole matris element fJ 
involve terms: 

(III - 4) 

with nl + n - p - q = 0 escept for the tensor interaction in which m + R = 2. p = q = 0. The 
parity of such term for the change ri.‘- -ri is: 

.-.s 
r] = (~)-=PfL = (-)+-q+L 

For a natural parity matrix element, J] = (-)’ and for an unnatural parity matris element! 

‘I= (-1 Jfl. so: 

The total geometrical coefficient for this term which esists only if L > 0 is: 

(III - 5) 

(III - 6) 

where PL.irlr and QL,int are polynomials. 
For all the interactions w.hich we have in mind: 

I) The denominator polynomial QL,;,~~(J) is a product of terms 
a) like (2J + I), (2.7 - I), (23 + 3), (2J - 3) and so on, <. 
b) but also (J + 2)? (J + I), J and (J - 1) ( these two last terms can give trouble when 

J=OorJ = 1 if they appear for L 1 J or L >_ J - 1 respectively ). 
‘2) The numerator polynomial PL,inr(J, oilj,, ,5;1j,, aizj:, $izj;) is of any degree in J and up 

to the third degree in [oj”lji, $yjji), (iizjl, A d ,8&,) separetely. It has been found that 

this dependence can be rewritten in terms of the 11 Xi and 11 Yi O~Y. 

The Xi and 1;: has been chosen such that the terms with a dangerous denomi- 
nator does not exist. 

1) For J = 0: a = O,a + 0, SO .Y+ = --Ys, Sa = -.X-s and all the orher S; vanish ( same 
behaviour for the ‘I:). 

2) For J = 1, o = &I,$ + 0 or Q f 0,;3 = 0: so Ss = Sg = Sic = .Yil = 0 ( same behaviour 
for the 1;). 

KOTES ON DWBX91 III - 2 
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The matris elrmeut of (1 - .q) has been divided in four parts: 

(III - 13) 

and the polynomials Q(J) and P(J, . . .) obtained for each product. This job KS done numeri- 
cally for each term 

and 

1) by finding which is the polynomial Q(J) which gives integer values of P( J, . . .) 
2) by finding by difference on J the polynomials in Q and ,3 which multiply each power 

of J in P(J, . . .) 
3) by identifying these polynomials in a aud 9. 

.A similar operation has to be done in order co separate ~;lli=J,.T=JI, If,=, T=Ij, zfs=, T=Oj 

%l,?kl, LO obtain ,? .bo’i 5) with 1’ and (&.c??). 

Three resu1t.s have been obtained for natural paricy matrix elements and thtee others for 
unnatural parity matris elements. They are those of I’, .Z’ (Zi.Zz) and (L.Z:,)( Z.52). 

3.2. - MULTIPOLES OF l’ AND rzts;,’ INTERACTIONS 

Among six expressions needed. the z2 for unnatural parity is the onIy one manageable to be 
printed in one piece: 

3.2.1. - NUMBER OF MULTIPOLES AND SYMMETRIES 

All the others five interactions are of the form 

with 
Df = -Ck - C;, Df = -8; - I$, 04’ = -C:’ 

(III - 14) 

(III - 15) 

(III - 16) 

Jacques R-LYNXL 
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) . 
-1) the tensor illteracr.ion has dilfferent mulripoles which 1v-e cali mite: 

c’ = (/.f + r,;) -SlYi 
J(J f 1) 

c~-i = -,.lI’, (25 i ~I-YLY-! 
-(ZJil)J(Jtl) 

C’J” (2J - l)Sl‘t\ 
=-i’i”‘(~JfljJ(J+lj 

.’ (III - 23) 

3.2.2.1. - EVEN PARITY MULTIPOLE EXPANSION OF J? 

J(J - 11 
p -(2J -i I-)(.1? i J 1) 

- c{-’ = _ - CJf” = (J + I)(./ + 2) 
- 4(2J 1 1 (III 24) - 1) ‘z(‘zJ - 1)(2J + 3) 4( 25 + 3) 

c; =- 
‘ZJ f 1 

4(2J - 1)(2J + 3) c 
J(J + 1) + Y, - Y3 I 

cJi’ = _ 
? Ji2 [(J+l)(J+3)-Ii+YJ] 

4(2J + 3) 

(y-1 = - c!+’ = -’ 4 -i 4 
[Sl - A-3 - Y-1 + I.j] 

(III - 23) 

(-i-x = 1 
J X(25 - 1) I 

(J - l){( J - 3)[J( J - “) - rY1 + 2~~~) - Y, + DYE - r-;j} - ‘2E;j + Ys I 

93 cs =- 
25 + 1 

8(2J - 1)(2J + 3) [ 
(J - l)(J + 2){J(J i- 1) + n-1 - 2J?z} - ‘z(J? + J - l)(Y> - 21; + 16) 

- 215 + l-g] 

ci+’ = 1 
J 16( 2J c 3) [ 

(J + 2){(J + 4)((J + l)(J + 3) - 2Yl + 2Y3] t I”? - 21,; + ‘I’b} - 21; + E;, 1 
(III - 2G) 

J-2 c, =- ,J;*; l 1) [J(J - 1) -.x-L f A-,] [J(J - 1) - J$ + &:Jl 

4 + y + y; - 21’ + y6 - 
2 

- 6 4 (‘LJ - 1)(2J + 3) 
{GJ” + 12J3 + 23J’ + 17J - 16 

G(S1 - S3)(l-1 - l-3) ., 7 
- 2f.J’ + J - l)(Sl - A-3 + Y-1 - Y3)) - J(J i l)(.,J _ 1)(2J L #J- + 2J - l,] 

cJ’? = _ Jf2 
6 8(J + 1)(2J -!- 3) 

[(J + I)(J + 2) - xl + x3] [(..J + i)(J + 2j - Yl + I’;] 

(III - ‘27) 
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.P 

.- 

- XjY2 - SlYl1) + 
LSj Yj 

J(J i l)(J + 2) I 

For J = 0, the non vanishing values of the coefficients above are: 

co= (%-.s~)(%-~) c?-(?-.s4;y-~ cA=- 3(2 - X4)(% - Y-4) 
6 d i- 32 

with ;pecial formulae for C’z and C’i. 

III - 8 

(III - 34) 

(III - 35) 

Jacques RAE’NXL _ 

- ---_ 
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/ :, 
C’Q” =; [ (J-+‘-i){(J;l)‘- S? - ~~ - J(S, i Ye)} i Sj i ~, i J$+ ;3) {(.I’ + ?)[(J + 2)‘Slli 

+ (%J- 1)(X-&Y? fS?I-;)]-%,Sjl3 -C?,s?Ys} - J(J , 1):3J , 3){(J +z)((J f?) 

[(A-? - s, - .S.j)‘E; f .S,(Yz - 1’; - Yj)] - (‘zJ3 + J? :J i l).:& - (2.J + i),y+) 
_ ‘; 

+(.2J’+ J - “)(.sjYl + A-41-j)) + 

(35 + 4)XjYj 

J( J + l)(J + 2)(2J + 3) 1 
(III - 39) 

- Y-j) - (S? - S, - .Yj)Yl] - (J - l)(aysY+ + s,Ys) - SjE> - .y?Yj} + 
2aYjYj 

J(J i l)(J + 2) I 
(III - 40) 

For .I = 0. the non vanishing values of the coefficients above are: 

c; = c; = -c; = (2 - A-r;r)(% - Y4) 
16 (III - 41) 

with special formulae for all. 

32.3. - ODD PARITY MULTIPOLE EXPANSIONS 

Let us give in these notations the muitipoles of the other interactions: 

1) the ceucral interaction vanishes. 
2) the (c?~.&) has only two n-dipole: 

f$-’ = (Ji.Sl)(JsI’;) C’Jf” = (J $ 1 -S,)(J f 1 - 11) 
(25; l)J ” (‘ZJ + l)(J + 1) 

[III - 42) 

3) the spin orbit interaction has only: 

CJ” 1 
6 

= - 
8(2J + 1) i %J(.J + 1) + (J i 2)(.S1 + II) - X2 - y2 + 

p-1 1 
6 

= 
8(2J + 1) i 

2J(Jil)-(J-l)(.S1tE;)-,s?-Y? 

(III - 43) 

NOTES ON DLVBX91 III - 10 Jacques R-4YYAL 
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cd-2 _ 1 
s - 16(2J - 1) 

(J - l){(J - 2)[J(J + .S1) - Y2 - (J + 1)(X4 - Y4)] + J(J c .l.~)Yl 

- (,J + 1)~; - y7} +- (J - 2)(Sj - 1.;) + Y9 - +{(J - l)((J - 2)[(J + l)(S,Yl - -l-l>‘;) + S,Y?] 

+ (J +- l)( .1-41.‘3 - S;IYA f S1Yt) + Slk; - (,I - 2)(.&Yl - S,Ys) f (J + l)SAY5 
. . 

- .Yj(y.. - k;) - .S,Yg} + ,;‘;l’,)] 

c;‘= 2.J + 1 - 
16(2J - 1)(2J + 3) 

J(J + 1)(2J’ +- 2J - 1 - 2Y2) + (135’ + 13J.- 9)X1 + (J’ i- J - l)Y1 

+ (J’ -!-J - 3)(.X, - I$) - (‘ZJ’ + 2-T - 3)]$ - 35j + 3Yj + YT + 21; + J( J: l> {(‘ZJ’ 4 4J3 

- 2J - 3)(.LYl - .s1E2) - (GJ’ + 12J” - 1OJ’ - 16J + 9).y1z’i - (1gJ’ + 19.~ - 12).yLy2 

i (5J’ + 5J - 6).X& - (2J’ + ‘ZJ + 3)(.15Yl - .y,Y5) + .L(.ZJ? + 2J - 3),&& 

+ 3(2J’ -I- ‘ZJ - l).S1Z’f - (J’ + ‘7 - 3)(.x.41-3 - 2&Ys + XlY4) + 3.y3yz - 6XjYj + 3X&g}] 

C8 
fJi-? = 1 

16(2J + 3) [ (J + ‘1){(J + 3)[(J f l)(J + 1 - .sl) - Y2 + J(& -I;)] - (J + l)(J + 1 - S1)E; 

- JY, -I- Y7) - (J +3)(X5 - Yj) + r”g - &{(J f 2) ((J + 3)(J(.Y4ki - XlY4) - .YlI.:J 

- J(.GY3 - .S,Y4 i- .y,Y6) j- XII’; > 
- (J + 3)(SjYl - ,y1Y5) + J.&l$+ 

-Yj(G - YI) + SlYCj} + 

sj Yj 
(J + l)(J + ‘2) 1 

1\‘OTES OK DWBX91 

For J = 0, the non vanishing values of t.he coefficients above are: 

(III - .jO) 

(III - .51) 

Jacques R.-lk’~\:XL 
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. 

cf-3 - 
5 -lijJ(1JJ:3-j;J- 1) [ 

(1 - I){(.] - ?)((.I - I)[J(J - Sj T2>\ - QY4] - 13 - >>I 

+ (J” - 9J’ -+ 2&J - 21)Y1 - Y; - 312) + (J - 2)[‘2( J - Ajyj + ~$1 + yl,, 
1 

p-1 =- 
1 

5 lG(2J - 3)(2J + 3) [ (J - 2){J(J - l)(J + l)(J + 3 + 3X1) - 2(3J’ -+ 2 J - 6j(y3 - y4) 

- ‘z(J i 6)X) + (35’ + ?I3 - .jJ? - %OJ + 6)Y1 + (J3 + 1lJ’ - l&J _ 6)Sn& 
_ (4J” - 9 J’ - 1OJ + 41)Y2 - (4J3 - J’ - 1oJ + 3)Y6 - (45’ + J - gjY; _ t4J’ + 3J _ gIYd 

_ 
+ (J - 3)Yg + 3k;ll - $q(4J3 - TJ’ - 75 + 1’2)l; + (4.J’ - J - 6)I\} 

- J(fl 
i 

1) {2( J - 2)[(J3 $qJ’ f ?J - 6)(Y3 - 1’4) + (33’ + -lJ f 6)lpj] + (4 J4 + 5 J3 _ 1~ J? 

- 135 + 12)& + (4.1” + 9J’ - 3J - Id)& - (3 J? + J - 12)Yg - (J + 6)I.-lo}] 

c’+l = - 1 
16(2J - 1)(2J + .5) (.I + 3){5(6 + l)(J i 2,(J - :! - 3S1) - .1(3J? + 4 J - .j)(\; - y4j 

.YI 
+ J(J+ 1) 

{2(J + 3)[(J” - J’ - 35 + 5)(Y3 - Y4) - (35’ + ZJ + 3)Y5] + (,1J’ + 11 J” _ Jo’ 

- 14J + lO)YG - (4J3 + 35’ - 9J + lo)& - (35’ + 5,~ - loj’~‘b + (J - 5)h)j 

C’JC” = J + 1 - s1 
5 16(J f 1)(2J + 3)(‘2J + 5) 

[(Ji.?){(J+3)((J+j)((J+l)i~i4)i.?1.i-.!~~~~~~+1-;j) 

-(J3f12Ja+49J+G2)YrY7-3~8]}-(J+3)[2(J+j)~’j - Y91 - k;o] 
(III - 54) 

(y-3 J-2 
6 =- 

SJ(J - l)(‘zJ - 3)(2J - 1) L (J-l){(J-2)(J;.SL);.S3- .x74} + s-j] 

L (J-~){(J-‘Z)(J+~~)+~~-I’~}+~~ I 

p-1 = - 1 
6 d(2J - 3)(2J + 3) 

J(TJ’ - 6J” + GJ’ + 135 - 4s) + (5J4 - J3 + gJ’ +-I.~ - 43) 

(-St + 15’1) -I- (3J3 - 25’ - 85 + G)(S3 -!- Y3 - -Ii-, - YI) j (J? + ‘LJ - 6)(,& -+ ITS) + f 

{(,i’J’ + 9J’ - 35 - 48)SlYl + (J’ + ‘25 - 6)(.Y4rl; + .Y,YI) + (5J - 6)(.Y5Y3 + .S3Yj)} 

+ J( J1+ 1j ((8J’ + 12J4 - 23J3 - 34J’ -i 135 + 15)&Y4 -+ (J’ - -IJ’ - ‘2.~ + 6j(.l.3Y-L 

- rs4I-i + Sly3 - .SlY4) f (7J3 + J’ - 14J - 3).S3Y.. +- (3J3 - +J - ij)(.S5YI + .S,l’j) 

4 (853 f 9J’ - 19.1 - 15)( SjE; f S,Yj)} f 
j.Yj Yj 

J(J - l)(J + 1) 
(3.J? - 2J - 3) 

1 

t~[(.J+.s~){(.J-eiY~tnd+Y~+Y~} 

t {(J - 2)S2 +- JS,; + ST + X4)( J + YI j] 

XOTES ON D1CBe491 III - 14 Jacques RYXAL 
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with special formulae for Ci and Cy”. 
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. 

4.3. - LECT 

This subroutine reads all the input This input scream is grouped into categories preceded by an 
integer ILECT which runs from 1 to 7. It allows part of t.he input stream to be changed in subjequcnc 
calculations. The first input strew must be read in the order of illcreasing ILEcT. The 
different categories are 

ILECT=l Description of the single particle bound states. 
ILECT=2 Description of two body interaction. 
ILECT=3 Presentation of the results. 
ILECT=4 Optical model of the initial channel. 
ILECT=5 Optical model of the final channel. 
ILECT=6 Description of the excited state. 
ILECT=T End of the input stream for this calculation 

For each category of data correspondin, 0’ to ILECT=l to 6! there is an upper limit of resident 
quantities in the array. Intermediate computation are performed beyond the upper limit already in 
use. If in a subsequent calculation the upper limit of new data is larser theu the previous one, the 
data for larger values of ILECT must be read again. 

If this calculation is not the first one and the previous calculation involved a summation 011 

J-transfer ( LO(a)=.TRUE. ) and the has not been read ( LO(lB)=.TRUE. in the last input ) the 
subroutine reads the description of the new J-transfer ( in the category ILECT=G, but without reading 
ILECT ). 

In any ocher case. this input starts by a title cwd: 
I) if this title is ‘DESCRIPTIOX ’ from column 1, the description of the input is printed by 

calling the subroutines IYP.4 and IXPB. 
2) if this title is ‘FIN ’ from column 1, the calculation is stopped. 
3) if the title card is neither ‘FIN ’ or ‘DESCRIPTION ‘, the subroutine LECT reads a card of 

logical control. 

4.3.1. - INPA-INP B 

These two subroutine are called one after the ocher if the title is ‘DESCRIPTION ‘. ‘They 
include only WRITE statements and they have been generated from the test written ou cards 
with a special program available with ECIS79. After the printing, a new title card is read in 
LECT. 

The descnption of the sub.routines called by LECT is given uccording to which oalue of ILECT uses 
them. 

4.3.2. - ILECT=l: Descrir,tion of the sinale particle bound states. 

The subroutine LECT reads only tile number of configurations and the number of steps of 

integraciou. 

NOTES OY DWBX91 Jacques R.k%5:.?l. 
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the parameters arc read. It must be normaiisrd to the units used for the input 
of the densities. 

3) the form factors are interpolated by a four points Lagrange formula: 

(IV - 1) 

4) the square root of the form factor is calculated if the use of the geomzrric mean is 
requested ( I4=1 ) or it is divided by 2 for the use of arithmetic mean ( 14 is stored 
in KTF(I<,Z,J) ). In order to be able to obtain the square TOOL, a real form factor 
should be always positive. A continuous square root of a comples form factor is 
obtained by introducing a change of sign in the result when the real part of the form 
factor is negative and the sign of its imaginary part changes. 

4.3.4. - ILECTz3: Preserrtation of the results. 

After the input of these data. the table of logarithms of faccoiials used for geometrical 
coefficients is computed. 

4.3.5. - ILECTz4: Optical model of the initial clxmne~. 

If the two body interaction is used to compute the free wave functions7 and they are not 
read on a tape, the subtoucine LECG described below with ILECT=B is called for the input of 
the description of the target ( note that the description of the carget is in terms of occupation 
numbers, that is scalar products of creation and annihilation operators and not in term of 
their tensor coupling to zero ) and the subroutine DIR’2 is called to initialise the working array 
for microscopic potentials and, eventually, compute the macroscopic potrncial read in LECG. 
In any case, some dimensions and reservations have to be computed. Then LECT calls the 
subroutine FDIS with IG=l. 

4.3.5.1. - FDIS 

This subroutine is called first for the initial state ( IG=l ) and after that for the 
final state ( IG=2 ). This subroutine: 

1) computes the cent.er of mass enerc and calls the subroutine POTE for the potentials. 
2)’ computes wave number and Coulomb parameters and calls the subroutine FCOU 

for the Coulomb functions. 
3) in a DO LOOP on the partial waves: 

4 

b) 
cl 

computes the Coulomb functions at two different points from their value and 
the value of their derivative in a middle point. Formulae are obtained from a 
five points derivation formula and three Kumerov steps of integration with half 
step size. 
calls the incegrarion subroutine IN’TE. 
computes partial absorption and print them with the phase shifts if requested 
( L0(33)=.TRUE. ). 

NOTES ON DWBX91 
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Date ?3/1’1/IggI 

a new one ( LOX(S)=.TRUE. ) and some ocher quantities ( number of partial waves. 
limit of eschange ) if LOS(G)=.TRUE. . 

‘2) if the pocenrials are not to be read on a tape ( LOS(S)=.F-kLSE. ). 
a) computes them by callin g the subroutines JIULT and PTIP as done in sub- 

routine DIRX for the transition to a O+ level in a loop on. the configurations 
of the target ( the subroutine GEO11, DERI and DER2 are also used in this 
computation ); note that the geometrical factor given by the function DCGS in 
the subroutine DIR-4 reduces to unity in this cze. 

b) computes the Coulomb potential if it is not requested from the Go body inter- 
action ( LOS(‘Z)=.FALSE. ), 

c) cornpurrs the array VR from V’S as described above, 
d) if requested ( LOS(4)=.TRUE. ), write on tape the number of steps, the srep 

size and the arrays \;S and VR ( storage of about 14 times the number of steps, 
in single precision ). 

2) if requested ( LOS(j)=.TRUE. ), the potentials are read on a tape, but the program 
stops if the number of steps and the step size do not agree with those of the run. 

3) if requested ( LOS(7)=.TRUE. ), the procon, neutron and total density are printed. 

If requested ( LO(SB)=.TRUE. ), tl re subroutine p&Its the potentials. 

.‘L .\ 

4.3.5.3. - FCOU 

This subroutine and the subroutines called by it are a small modification of those 
written at the Department de Calcul Electronique Saclay by: [lo] BARDIN! C., D-AX- 
DEU, Y., GAUTIER, L., GUTLLERMIX, J., LENA, T.t PERNET, J.&l., Xote CEX-X- 
906 (19G8) and [ll] BXRDIN, C., DXXDEU, Y., GXUTHIER, C., GUILLERMIN, J., 
LEK’X, T., PERNET, J.-M., WOLTHER, H. H., TASIURX, T., Camp. Phys. Comm. 
3 (1972) 2. They compute the regular and the irregular Coulomb functions and their 
derivatives for 3 given 9 and p for different values of the angular momentum L, starting 
from L=O. In the original subroutines, the calculation of phase-shifts has been suppressed 
except for L=O, the factorisation of some power of 10 haj been changed from modulo GO 
to modulo 15 in order to avoid overflow in the computation of Coulomb corrections on 
3 VAX computer. This subroutine calls FCZO to obtain Coulomb functions for L=O and 
computes the other ones by recurrence involving function and derivative at two values 
of L. For the regular function, upwards recurrence is used if p < 9 -+ ,/m and 
downwards recurrence in the other cae. Upwards recurrence is used for the irregular 
function. 

4.3.5.3.1. - FCZO .* 

This subroutine computes the Coulomb functions for L=O. It calls the function 
SIG&f to obtain the phase-shift. 

1) for 17 = 0, the subroutine returns sin and cos, 
2) for 17 > 28 or n < -8, the subroutine calls YFRI to use Riccaci methods. 
3) for p 2 p* = T..5 + 5171(/3, where P,,, is the asymptotic limit, the subroutine 

calls YFAS to use asymptotic expansions. 
4) for other values, the subroutine calls YFIR for the irregular function and: 

a) if 0 < q < 10 and p < 2 or 17 > 10 and q > (5~ i 6)/T, the subroutine 
uses regular series at the origin for the regular Coulomb functions. 

b) in all the other cues, it uses espansion in Chzbyshev polynomials for the 
regular function: o) between the origin and p = m if n < 2.5 ( Clensham 

XOTES ON DWB,l91 
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This subroutine LIS?I the working array 1’s only fGC the microscopic optical model ( 
LO(37)=.TRUE. ). The main operations are: 

1) the frsc part is an usual solution of the Schrodinger equation: 
a) at the first call, fGL' a microscopic potential including first and second derivative 

term, the inverse of the second derivative terms in the Schrsdinger equation is 
computed. and the first derivative potential is mulcipied by it. 

b) the potential for this equation is computed in the memories reserved to return 
the wave function. It is obtained from the microscopic potential in VS or from 
VR if there are no derivatives. In the first case, it is multiplied by the inverse of 
first derivatives. For microscopic calculations, this potential is kept ill ~~s(r.1;) 
for I<=37 and 38. 

c) 2 + m-/(1 - h’l*-/l?) is computed and the equation is solved by xum.erov 
method. 

d) phase shift and normalised solution are obtained. The subroutine returns for a 
macroscopic potential. 

2) the second part is the set up of the incegro diKerentia1 system of equations needed 
with a microscopic potential ( L0(37)=.TRUE. ): 

a) if the eschange is not included because it was not requested or because the 
angular momentum is higher than the limit ( LOS(G)=.TRUE. ): a) if there 
is no derivatke terms, the code returns; ,Z) if there are first derivative terms, 
the wave function is derived by calling the subroutine DERI and the DWBX 
effect of these derivative terms computed. If the effect is small, the subroutine 
returns and will return for higher angular momenta ( LO(8) is set .TRUE. ). 

a) if rhe potential has nor, to be read on a cape ( LO-X(S)=.FALSE. ), the subroutine 
initialises to 0 the working array xA(I,J&) of which the two first dimensions 
are the number of steps: 

- the non derivative terms will be in I<=1 and 2, 
- the first derivative terms will be in I<=3 and 4, 
- the second derivative terms will be in I<=5 and 6, 
- I<=7 is used as a working array in the subroutine PTIV, 
- the final system of integro differeutial equations will be built and solved in 

Iki and 8. 

c) if exchange in the microscopic potential is requested ( LOX(G)=.FALSE. ) and 
if the angular momentum or the J. transfer is not too large, there is a DO 
LOOP on the J transfer including a call to the subroutine AIULT to compute 
the multipoles and a nested DO LOOP on the configurations with a call to 
the subroutine PTIP for the natural parity case or to the subroutine PTII 
for the unnatural parity case. In this use, the subroutines PTIP and PTII 
call the subroutine PTIV co build the matrices XA. The subroutine GEOM, 
DERI and DER’: are also used inside the nested DO LOOP. Note that the 
geometrical factor which is essentially in the subroutine ECHX the product of a 
S-j qmbol given by the function DJGJ and two 3-j symbols given by the funcrion 
DCGS reduces here to the square of the 3-j symbol between the total angular 
momentum of the free wave j and the bound state j’ and the value .I of the 
transfer multiplied by -(2J+ l)/{(‘zj+ 1)(2j’ + 1)). If no contribution is found, 
the exchange is suppressed by setting LOX(6)zTRUE. . 

cl) if requested ( LOS(4)=.TRUE. ), the matrix SA is written on tape. This 
storage is very large: it involves six times the square of the number of 
steps in single precision for each total angular momentum and i=&. 

e) if the potential 11% to be read on a tape ( LO,X(3)=.TRUE. ), the subroutine 
reads it but set LOX(B)=.TRUE. if it finds a end of file. 

Jacques RAYXXL 
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> IUTEGRALS !dITH REGULAR FUNCTIOXS: (L+l) DIRECT MCKWARDS RECURREiTCE 
> 1 0.97730350&D-02 0.9773035021D-02 
> 2 0.9758158329D-02 0.9758158318D-02 

The integrals of products of irregular functions between themselves and with the 
regular ones are obtained by upwards recurrence. 

4.3.5.6. - SCEL 

. . : 
This subroutine is quite similar to the subroutine SCEF for which more details will 

be given but simpler: 
1) it compute the helicity phase shifts and the partial absorpcions which are summed 

to obtain the total reaction cross section, 
2) for the angles given with ILECT=3, it computes the amplitudes with the reduced 

matrices of rotation given by the subroutine EURO and obtains the cross section. 
the cross section divided by Rutherford’s cross section for charged particles, the 
polarisation and the observable Q and print them, 

3) it prints the total reaction cross section and calls the subroutine GRAL with indi- 
cations read with ILECT=3 Tor the elastic scattering. 

4.3.6. - TLECT=5: Optical model of the final channel. 

Escept for the input of Q instead of the laboratory energy, same as for ILECT=4 if the 
optical model is changed ( LO(X!)=.FALSE. ), but the subroutine FDIS is called with IG=2 
instead of 1 . .If the optical potential is the same ( LO(X!)=.TRUE. ) and is obtained from the 

. two body-interaction ( LO(X)=.TRUE. ) and the potential have been written ou a tape for 
the initial state ( LOX(?)=.TRUE., LOX(5)=.FALSE. ), they will be read from the tape for 
the final state ( LOX(S)=.FALSE., LOX(3)=.TRUE. ). 

4.3.7. - ILECT=B: ‘DescriDtion of the excited state. 

The subroutine reads number of configuration, angular momentum and parity and calls 
the subroutine LECG which uses subroutine XYIS. 

4.3.7.1. - LECG 

This subroutine: 
1) reads the description of the configurations ( if called for the description of the target, 

this description is in terms of occupation numbers, that is -&2j + 1) times the 
usual value ) and checks the validity of angular quantum numbers, 

‘2) with the use of BCS ( L,O(lS)=.TRUE. ), calls the subroutine SKIS with ID& to 
transform the data, 

3) in case of different notation ( LOO(I<)=.TRUE. ), calls the subroutine vAti ID=& 
4) with a macroscopic interaction ( LO(X)=.TRUE. ) reads the description of these 

macroscopic form factors. 

XOTES ON DWBX91 
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4.4. - DIR-A 

. , 
: 
L. . - 

This subroutine computes the transition amplitudes in SO~I(1.J.K) for the direct term. After 
calling rhe subroutine MULT to obtain the multipole for the J of the transfer, there is: 

1) a DO LOOP on the contribution of each of the configurations, successively for S and for y. 
The geometrical coefficient is obtained with the function DCGS and the subroutine GEOAI: rllr 
subroutines DERI and DER’; are used to derive the bound functions, the contribution of the zero 
range interaction is computed in the subroutine PTIO, the contribution of finite range interaction 
is computed in subroutine P’TIP for natural paricy transitions or subroutine PTII for unnatural 
parity transitions. The working array VS(I,I<) is used for the product of bound waves functions 
and their derivative in Ii=43 to 18. Results are in the same array: 

a) twelve non derivative complex form factors in I<=3 to 2G to be used without coef^ncient and 
with the II coefficients XG computed by the subroutine GEOU, 

b) six first derivative comples form factors in I<=27 to 38 to be used without coefficient and 
with the 5 first coefficients .YG, 

c) two second derivative complex form factors in I<=39 to 42 to be used withour, coefficienr and 
with the first coefficient .YG. 

2) if requested ( LO(l-&)=.FALSE. ) the subroutine DIRX print the existing form factors. 
3) two :>.ested DO LOOPS on the total angular momentum of the initial particle and the paricy 

which include the computation in VS(I,I<) for K=43 to GO of the product of the focm factors with 
the initial wave function and its derivatives obtained with the subroutine DERI and DER’Z, and 
a DO LOOP on the final waves with: 

a) the computation of geometrical coefficients with the function DCGS and the subroutine 
GEOM, 

: b) if requested ( L0(21)=.FALSE. ) evaluation of the Coulomb correctious using the subroutine 
COR.4. 

c) summation into VS(I,67) and VS (1,68) of the products of initial wave with form factors 
multiplied by the geometrical coefficients computed in the subroutine GEON and integration 
of the result with the final wave. 

4.41. - MULT 

For a value of the transfer J, this subroutine computes the arrays of multipoles A>I( J,E;,L) 
of which the first dimension is the number of steps, the last oue the nunkvs of rauges and the 
second one is 18: 

I) irregular multipoles ( Hankel functions of first kind for the variable in ) for VJ-~ to VJ;3 
in I<=1 to T, 

2) regular multipoles ( Bessel functions for the variable ir ) for VJ-3 to VJ+~ in K=8 to 18. 

The subroutine is assumed to have been called already for a value J’ given as argument ( 
at the first time, J’=-1 ). ‘This subroutine do: 

1) if there is a two body Couiomb interaction, the subroutine computes the irregular and the 
regular Coulomb multipoles at the end of the array AM, 

2) there are three nested DO LOOP’s on the range, on the integration points and on the J 
values from the last one plus one ( J’fl ) to the one requested in which: 

a) if J=O, the multipoles for negative values are set to zero, the first regular multipole 
and the first four irregular multipoles are computed; a backwards recurrence is used 
to obtain the regular multipole, usin, * the value for J=O co normalise them, 

b) if JfO. all the multipoles are shifted down: a new irregular multipole is easily obcamed 
by upwards recurrence, a new regular multipole has to be obtained by backwar& 
recurrence which has to be done oniy ouce for .j values of J. due to the exrra storage, 
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C0111putes h% of a function where fr is the Step size. It assumes the value before 
the first to be zero and needs ac lest 5 values. It uses: 

: Xj = & [-1s(Yi+l - Yi-1) - 9(Yi+? - yi-2) -i- Yi+3 - yi-31 (11: - 4) 

but for the first three points: 

7 T1 = u - T5y1 + 13oyz - lOOy3 -i- 50& - 1syj + ‘yci] 

22 7 =- 
60 

- WJl - 35y: f 8Oy3 - 3oy4 + 8ys - ye] (IV - 5) 

23 = f [%A - Y2) - 9(y5 - y1) + ye] 

and for the 1st three points ( II being the last oue ): 

=n-1 = - wh-4 + 1OOY,-3 - 15Oy,-? + 7Tynm1 + loy,,] (IV - G) 

En = f PY-6 - 72Yn-5 + 225Lh-4 - -LOOY,,-3 + mJy,-s - 3(yJy,-L + l.LQ,] 

z- 

4.4.3.2. - DERS 

: 
2. Computes II? & of a function where h is the step size. It assumes the value before 

the first to be zero and needs at least 7 values. It uses: 

xi = & [‘2.TO(yi+l + yi-1) - ‘L’i(yi+z + yi-2) + ‘L’yi+3 i ‘zyi-3 - 49Oyi] (IV - 7) 
: .: 

but for the first three points: 

13ye l [ 2’1 = - - 147y1- 2jjyz j 470y3 _ 2djy, + g3 * yj _ 
180 

I x2 = &‘8yl - QOY? + 2OOy3 + 1 jy4 - 1zy5 + 2y6] (I\’ - 8) 

1’3 = 'Li(y5 + YI) t 2~6) - 49Oy3] 
: 

and for the last three points ( R being the last one ): 

x,,-z = &2Y,,-6 - 12&l-5 + lSy,4 + 2ooy,3 - 42O$l,*-~ f ‘22dynql - 13y,) 

XII-1 = $jj(-l3&1-6 + 93yn-j - 2djy,-~ +47Oy,3 - 2jjy,,-z - 14jynal +- 13jy,,) (I\: - 9) 

2’ n = &4 13’Ty+j - 9TZy,-j + 297oy,-.J - .josoy,,3 + 52G,“_~ - 3132y,-1 f d12y”) 
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but the scalar interaction needs a correction: 

Date Z/12/1991 

(I\’ - 12) 

which cancels out for rensor, spin orbit and ocher interactions, 
d) multiplication by the 1.2 radial dependence, 
e) multiplication by a power of ~2 ( positive or negative ): 
f) addition to the form factor. 

The subroutine returns if it is called by the subroutine IXTE for the exchange term 
of the microscopic potential. In the other cases: the CWO body Coulomb coutribution is 
computed, if requested ( LO( lB)=.TRUE. ). 

4.4.4.2. - PTCP 

This subroutine returns if no t’-’ or (z..!?)’ interaction is used. If r.hey are used, 
the subroutine computes with the coefficients XG the arrays SO(I,J,K), Sl(1.J.K) and 
S’Z(1,J.M) respectively for the non derivative. the first derivative and the second derivative 
form factors. , 

I =1 for the 1’ interaction, 
I =2 for the ,?’ (zl .&j interaction, 
I =:?I for the (L.Z-,)(L.Z-,) interaction, 

J stands for the geometrical dependence on the other particle ( J=l to 12 for 
SO, J=l co 6 for Sl, J=l to 2 for S2 ), 

I< stands for the multipole involved ( I<=1 to 13 for SO, Ii=1 to 1G for Sl: 
I<=1 to 3 for S2 j, but Sl(I,J,B)=-Sl(I,J,‘T), Sl(I,J,I;;8)=-Sl(I,J,Ii) with 
contribution of 52 for I<=1 to G and S2(I,J,2)=-%(I,J,l)-S2(I,J:3). 

4.4.4.3. - PTII 

This subroutine is very similar to the subroutine PTCI and is called from the same 
subroutines, escept for the subroutine POTE. The differences with the subroutine PTCP 
are: 

1) 

‘2) 

3) 

4) 

4.4.4.4. - PTCI 

it calls the subroutine PTCI instead of the subroutine PTIP, to obtain coefficients 
for 2’ (F1.f~) and (z.&)(z.&) interactions only. 
if some value VA were found, 334 comples coefficients are computed, with expressions 
in this subroutine for the scalar, the tensor, the spin orbit and the 1’ inceracciou or 
&rh results of the subrourine PTCI for the ocher interactions, 
if not called from the subroutine INTE for the exchange term of a microscopic 
potential, this subroutine acts like the subroutine PTCP but there are 59 groups of 
operations instead of 4’2. 
there is no Coulomb interaction. 

Like the subroutine PTCP, this subroutine returns if no 1’ or (1.9)’ iiicerac1ion 
is used. If they are used, the subroutine computes with the codikients XG the arrays 
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.s 
3) addition to the form factors. 

4.4.4.7. - PTCO 

This subroutine returns the coefficients needed in the subroutine PTIO. 

4.4.5. - CORA 

For given angular momenta. this subroutine returns the four coefficients needed in the 
asymptotic region, if its last argument is .TKUE. ( see Ref [lo] ). When this last argument is 
.FMXE., it returns also the four other coefficients needed for finite integrals. This is limited 
to a transfer of angular momentum 4. There are special formulae for the on-shell corrections 
~which are necessary only for dipole escitation. 

4.5. - ECHA 

Inside five nested DO LOOP’s on the multipoles, on the configurations, on the concrihutions of 
the amplitude X and Y, on the total angular momentum of the initial wave and on its parity, there is: 

1) the computation of the form factors: 
a) the geometrical coefficient is obtained with the function DCGS and the subroutine GEOU, 
b) the particle wave function is multiplied with the initial wave function or its derivatives 

obtained with the subroutines DERI and DERP, 
c) the form factors are obtained with the subroutine PTIP in the natural paricy c5se and the 

subroutine PTII in the uunacural parity ctLse, 
cl) the form factors in W(I,K) for I<=3 to 2G ( or less ) are multiplied by the hole wave function; 

the other ones are multiplied by the first or the second derivative of the hole function obtained 
with the subroutine DEFU or DERZ and the result added to k’S(T,I<) for I<=3 to 14 for the 
first derivative, I<=3 to 6 for the second derivative. 

2) a DO LOOP on the final waves: 
a) the geometrical coefficient is obtained with the functions DJGJ and DCGS and the subroutine 

GEOM, 
b) the form factors are summed into VS(I:Kj for K=13 and 44, 
cj the integrals with the final wave are done and the result added to SOM(I,J,K) which contains 

already the result of the direct calculation when this subroutine is called. 

4.6. - SCEF 

This subroutine prints results at equidistant angles. The input is the array of integrals SOU(1.J ?I<) 
in which I< is the total angular momentum of the initial wave plus one half, 3 corresponds to the cotal 
an@ar momentum of the final xave, narting from one for the lowest one and the real parts are stored 
in I=1 and 3, the imaginary parts in I-, -.j aud 4 for the two integrals. -After the output of the title of 
the run, there is: 
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LECT 
---- 

---- 

---- 

m--w 

---- 

B--v 

---- 

---- 

---- 

1 ---- 

---- 

---- 

---- 

---_ 

-a-- 

---v 

---- 

n-w- 

---- 

---- 

---- 

---- 

---- 
---- 

DIRA 
m-m- 
---m 

--_- 

-a-- 

---- 
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IHP.4 
IZPB 
LX1 
---- 
LEC2 
FDIS 
---- 
---- 
---- 
-a-- 
---_ 
---- 
---- 
-I-- 
---- 
---_ 
---- 
---m 
---- 
---_ 
---- 
---- 
---- 
me-- 
---- 
---_ 
---- 
---- 
---- 
---- 
---- 
---- 
---- 
-e-v 

LECG 
-m-v 

DIR2 
HORA 
HEM0 

MULT 
DCGS 
GEOM 
DERI 
DER2 
PTIP 
---- 

PTII 
---- 

PTIO 
---- 
---- 

STDP 
MEXO 
MEMO 
POTZ 
-me- 
---e 
---_ 
---_ 
--me 
-m-m 
---- 
---_ 
FCOU 
-m-w 
---- 
---_ 
---- 
INTE 
-_-_ 
---- 
---- 
e--e 
-me- 
---- 
---- 
-e-v 
CORI 
-e-e 
SCEL 
---- 
---- 
MEMO 
XYiS 
MEMO 
DERI 
STIM 

PTC? 
PTS? 
PTCI 
PTIV 
PTCO 
DERI 
DE92 

:~lEMo 

DERI 
DERZ 
GEOM 
KULT 
PTIP 
---- 
PTIO 
---- 
---- 
FCZO 
m-m- 
---e 
---- 

DCCS 
DERI 
DER2 
GEOM 
MULT 
PTIP 

PTII 

CORH 
MEMO 
EMRO 
GRAL 
MEMO 

PTC? 
PTIV 
DERI 
DER2 
PTCO 
SIGH 
YFRI 
YFAS 
YFIR 
m--e 

YFCL 

PSI 
YFAS ! 

PTCP 
PTIV 
PTCI 
PTIV 

Dacc Z/12/1991 
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Jacques R.4lY.U 
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