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• Thermalization, Quantum Chaos, and Level Density
• Shell model and 
• “Constant temperature” model



Many-body quantum system with no random elements,
internally developed chaotic behavior

In physical terms, one may say that quantum 
thermalization occurs in the Hilbert space rather than 
phase space

/T. Mori et al. J. Phys. B51, 112001 (2018)./

General method – diagonalization of Hamiltonian matrix  

“Eigenfunction thermalization hypothesis” – read Landau and Lifshits





Temperature T(E)

T(s.p.) and T(inf) =

for individual states !



EFFECTIVE TEMPERATURE of INDIVIDUAL STATES

From occupation numbers in the shell model solution (dots)

From thermodynamic entropy defined by level density (lines)

Gaussian level density

839  states  (28 Si) J=0

Microcanonical temperature 



Occupation numbers in multicharged ions Au25+

(recombination as analog of neutron resonances in nuclei)

/G. Gribakin, A. Gribakina, V. Flambaum/

Average over individual states is
equivalent to a thermal ensemble 



J=0                 J=2               J=9

Single – particle occupation numbers

Thermodynamic behavior

identical in all symmetry classes

FERMI-LIQUID PICTURE

28 Sid5/2, d3/2, s1/2 



J=0

Artificially strong interaction (factor of 10)

Single-particle thermometer cannot resolve

spectral evolution



s, p, sd, pf - space 



J = 0 – 7, positive parity  level density

S. Karampagia, V.Z.
Nucl. Phys. A962 (2017)





Quantum numbers

Partitions

Many-body dimension

Finite range
Gaussian

Centroids – first moment

Widths - second moment

Moments method No diagonalization required Exact 
quantum 
numbers

[Wong]



Partition structure in the shell model

(a) All 3276 states ; (b) energy centroids

28Si

Diagonal

matrix elements

of the Hamiltonian

in the mean-field 

representation



Energy dispersion for individual states is nearly constant
(result of geometric chaoticity!)

Also in multiconfigurational method (hybrid of shell model and 
density functional)

28
Si

Widths add in quadratures



INVISIBLE FINE STRUCTURE, or

catching the missing strength with poor resolution

Assumptions : Level spacing distribution  (Wigner)

Transition strength distribution  (Porter-Thomas)

Parameters: s=D/<D>,  I=(strength)/<strength>

Two ways of statistical analysis: <D(2+)>= 2.7 (0.9) keV and

3.1 (1.1) keV.

“Fairly sofisticated, time consuming and

finally successful analysis”

Shell-model
level density.

Moments method
(no diagonalization)







Level density for different 
classes of states in 28Si

Full agreement between
exact shell model 
and moments method

Problems: truncated orbital space,
only positive parity
in sd-model, …  

Generic shape

(Gaussian)



R.Sen’kov, V.Z.
PRC 93 (2016)



MEAN  FIELD  COMBINATORICS

S. Goriely et al. Phys. Rev. C 78, 064307 (2008)

C 79, 024612 (2009)

http://www.astro.ulb.ac.be/pmwiki/Brusslin/Level 

Hartree – Fock – Bogoliubov plus

Collective enhancement with certain phonons

S. Goriely, A.-C. Larsen, D. Muecher

Comprehensive test of nuclear level density models

Phys. Rev. C 106, 044315 (2022)                         

Constant temperature model

Monte Carlo Shell model – Y. Alhassid +…









CONSTANT  TEMPERATURE  PHENOMENOLOGY

LEVEL  DENSITY (E)  =  (const) exp (E/T)

Ericson  (1962), Gilbert and Cameron (1965)

Moretto (1975) – pairing phase transition

T – “effective constant temperature” 

1/T – rate of increase of level density



Partition function = Trace{exp[-H/T(t-d)]} diverges at T > T(t-d) 

CONSTANT  TEMPERATURE  PHENOMENOLOGY

Level  density  (const) exp(E/T)



Cumulative level number
N(E) = exp(S),
Entropy S(E)= ln(N)
Thermodynamic temperature
T(t-d) = dS/dE = T[1 – exp(- E/T)]
Parameter T is limiting temperature
(Hagedorn temperature in particle physics)

Pairing phase transition? (Moretto)  - Chaotization

1/T – rate of increase of the level density  



Effective  temperature T

for (sd) – nuclei,

tabulated  for  all 

classes  of  spin

(ADNDT, 2018)





Degenerate single-particle levels – smaller T (faster chaotization)



Eliminating pairing interaction

k(1) < 0 “antipairing”



M2

“Spin cut-off” parameter

Markovian 
random process
of angular momentum
coupling



M2



Space – only T=2,
Two-body interaction through T=1 channel 

4 valence neutrons 4 proton holes



classification

Pure                        Total                 (N=0)

(N=1)

Recursive relation

Exclusion of c.m. states





Level density (0+) on two sides of deformation shape transition

/”collective enhancement”/



Sensitivity to the fit interval  



What next?

*  Tables for pf-shell – and further?
*   Comparison of phenomenological descriptions with “Constant temperature” model 
*   New methods - Lanczos algorithm 

- hybrid methods
- random interactions

*   Mesoscopic applications (disordered solids)
*   Can we analytically derive CTM?
*   Computational progress
*   Continuum effects, width distribution, overlapping resonances
*   Application to reactions
*
*
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MANY-BODY QUANTUM CHAOS AS AN INSTRUMENT

SPECTRAL STATISTICS – signature of chaos

- missing levels

- purity of quantum numbers

- level density without full diagonalization

- presence of time-reversal invariance

EXPERIMENTAL TOOL – unresolved fine structure

- width distribution (more work required)

- damping of collective modes

NEW PHYSICS - statistical enhancement of weak perturbations

(parity violation in neutron scattering and fission) 

- mass fluctuations

- chaos on the border with continuum

THEORETICAL CHALLENGES

- order out of chaos

- chaos and thermalization

- development of computational tools

- new approximations in many-body problem



Random matrix canonical ensembles – only as mathematical limit



Chaotic motion in mesoscopic systems

* Mean field (one-body chaos)  - classical features 

* Strong interaction (many-body chaos)

* High level density

* Mixing of simple configurations

* Destruction of quantum numbers,

(in nuclei: conserved only energy; J,M; T,T3; parity)

* Local spectral statistics – Gaussian Orthogonal Ensemble

* Correlations between classes of states

* Coexistence with (damped) collective motion

* Thermal equilibrium – without heat bath

* Continuum effects – open system



CLOSED MESOSCOPIC SYSTEM

at high level density

Two languages: individual stationary wave functions  
thermal excitation

* Mutually exclusive ?
* Complementary ?
* Equivalent ?

Answer depends on thermometer



CHAOS  versus  THERMALIZATION

L. BOLTZMANN – Stosszahlansatz = MOLECULAR CHAOS

N. BOHR - Compound nucleus = MANY-BODY CHAOS

N. S. KRYLOV - Foundations of statistical mechanics

L. Van HOVE – Quantum ergodicity

L. D. LANDAU and E. M. LIFSHITZ – “Statistical Physics”

Average over the equilibrium ensemble should coincide with 

the expectation value in a generic individual eigenstate of the

same energy – the results of measurements in a closed system

do not depend on exact microscopic conditions or phase

relationships if the eigenstates at the same energy have similar

macroscopic properties

Eigenstate Thermalization Hypothesis 

TOOL: MANY-BODY QUANTUM CHAOS



From turbulent to laminar level dynamics

(shell model of 24Mg

as a typical example)

Fraction (%) of realistic strength

LEVEL DYNAMICS

Chaos due to particle interactions at high level density



Information entropy is basis-dependent
- special role of mean field

Shannon 
entropy



INFORMATION ENTROPY AT WEAK INTERACTION

28 Si  Shell Model
(artificially weak 
interaction) 



INFORMATION  ENTROPY  of   EIGENSTATES

(a)  function of energy; (b) function of ordinal number

ORDERING of EIGENSTATES of GIVEN SYMMETRY   

SHANNON ENTROPY AS THERMODYNAMIC VARIABLE

28 Si shell model 
Realistic interaction

strength 



Local density of states in
condensed matter physics





GROUND STATE ENERGY OF RANDOM MATRICES

EXPONENTIAL CONVERGENCE

SPECIFIC PROPERTY of RANDOM MATRICES ?

Banded  GOE Full GOE

/The proof based on the Lanczos algorithm/



REALISTIC 

SHELL             48 Cr

MODEL

Excited state

J=2, T=0

EXPONENTIAL

CONVERGENCE !

E(n) = E + exp(-an)

n ~ 4/N



REALISTIC

SHELL

MODEL

EXCITED STATES

51Sc

1/2-,      3/2-

Faster convergence:

E(n) = E + exp(-an)

a ~ 6/N



EXPONENTIAL

CONVERGENCE

OF SINGLE-PARTICLE

OCCUPANCIES

(first excited state J=0)

52

Cr

Orbitals f5/2 and f7/2



s + p + sd + pf shell space
WBT interaction, 
negative parity 

Exact shell model:       stair-dashed (with CM) and stair-solid (no CM)
Method of moments: straight-dashed (with CM) and straight-solid (no CM)
Dotted line:                   spurious states 

20  Ne





New method for
shell-model 
level density
/B.A. Brown, 2018/



CONVERGENCE REGIMES

Fast

convergence

Exponential

convergence

Power law

Divergence







Level density (0+)
on two sides of 
deformation shape
transition

/”collective enhancement”/



PAIR CORRELATOR

(b) Only pairing

(d) Non-pairing 

interactions

(f) All interactions

States  J=0



PAIRING

PHASE

TRANSITION

PAIR CORRELATOR as a THERMODYNAMIC FUNCTION



24 Mg

Low-lying levels  
in absolute  (a)
and rotational (b)
units;

Ratio E(4)/E(2)   (c)

Transition rates (d)

V(1) = matrix elements of the two-body interaction 
with change of orbital momentum of one particle
by 2 units (the same parity) – way to deformation 



V(1) = matrix elements of the two-body interaction 
with change of orbital momentum of one particle
by 2 units (the same parity) – way to deformation 



Amplitudes of the ground 
state wave functions 
in terms of [J(p),J(n)] 



Number of  0+ levels up to 
energy 10 MeV



J=0 – 10 for 26 Al, 28 Al, 30 P (up to 10 MeV)

J=1/2 – 21/2 for 27 Al (up to 10 MeV)

J=0 – 10 for 50 Mn (up to 60 MeV)









H = k(1)V(1) + k(2)V(2)

V(1) – matrix elements of

single-particle transfer 



No diagonalization required



****
Neutron resonances

****
Low-lying levels



Effective 
temperature for 
the level density
at low energy 
(up to 6 – 8 Mev)
Even-odd 
staggering
Clear minima in 
the vicinity of 
N=Z



U(1) = matrix elements of the two-body interaction 
with change of orbital momentum of one particle
by 2 units (the same parity) – way to deformation 




