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Configuration-interaction shell model

Disadvantage: 
• not size-extensive, basis grow exponentially

Advantages: 
• Excited states easy to generate
• Direct access to wave function allows for detailed analysis
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Outline of talk

• The rise and fall and rise of the shell model
• The challenge of intruders
• 11Li  & 29F as case studies

• Possible paths forward
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A brief and incomplete history

1949: Goeppert-Mayer and Axel, Jensen & Suess show
spin-orbit splitting explain magic numbers. Single-particle
picture describes many measured magnetic moments.
(Non-interacting shell model)

1956: Edith Halbert and J. B. French perform early 
configuration-interaction (interacting shell model) 
calculations.

1965: Cohen-Kurath empirical interaction for valence p-shell
1977: Whitehead introduces Lanczos method
1984: Wildenthal interaction for valence sd-shell
1991: FPD6 interaction for valence pf shell
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A brief and incomplete history

But….

 1970 Barrett and Kirson, 1972 Schucan and Weidenmuller:
intruder states can cause perturbative expansions 
to ultimately diverge.

This in particular applies to particle-hole states.

This makes expanding beyond the valence space problematic,
and almost kills the field (except for a stubborn few) for 
twenty years.
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A brief and incomplete history

But….

1970: Barrett and Kirson show that intruder states will 
cause any perturbative expansion to ultimate diverge.

This in particular applies to particle-hole states.

This makes expanding beyond the valence space problematic,
and virtually kills the field for twenty years.

Shell Model

1949-1970
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A brief and incomplete history

1991-1993: Barrett and Vary introduce the no-core 
shell model:
Without a core, there is no ”particle-hole” expansion.

Around this same time high-precision phase shift data from
NN scattering became available. 

Fitted to this data, the Argonne potential showed one could
reproduce nuclear many-body data.

Then chiral EFT gave a systematic way to characterize 
nuclear forces

The field lurches back to life!
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Modern many-body calculations

No-core shell model: in harmonic oscillator 
basis, “all” particles active (up to Nmax h.o. excitation
quanta), with high-precision interaction (e.g. chiral EFT,
HOBET, etc.) fit to few-body data

e.g. p-shell nuclides up to Nmax = 10 … 22

(cf talks by Anna McCoy and Mark Caprio)
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Some highlight achievements:

• Can get spectra of light nuclei ”from first principles”

Maris , Vary, Navratil 
PRC 87, 014327 (2013)

chiral 2+3 body forces

P. MARIS, J. P. VARY, AND P. NAVRÁTIL PHYSICAL REVIEW C 87, 014327 (2013)

TABLE I. The 7Be and 7Li ground- and excited-state energies
(in MeV) obtained using the chiral NN and chiral NN + NNN

interactions. The HO frequency of h̄! = 13 MeV and the 8h̄! model
space were used. Our measures of basis-space dependence are given
for the last two significant figures of the quoted theory result. Two
quantities, as explained in the text, are quoted in parenthesis for
excitation energies with the notation: (0.5 × total range of swing
with h̄! at Nmax = 8; difference at h̄! = 13 MeV between Nmax = 6
and 8 results). Only the second quantity is quoted for the magnitude
of the total ground-state energy. The 7Be states labeled “mixed iso”
have large isospin mixing and their basis-space dependence can be
approximated by the dependencies in the corresponding states of 7Li.
Experimental values are from Ref. [29].
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resonance width. This may be useful for estimating relative
widths [28].

From the Nmax = 8 curve in Fig. 1 we select the optimal
frequency as h̄! = 13 MeV for examining our results in
greater detail. This adoption sets one of the inputs to the
determination of the basis-space dependence in excitation
energies as just described. We also define the basis-space
dependence of our total ground-state energy as the difference
in total energy at this adopted minimum for the basis-space
increment from Nmax = 6 to 8. As an example, this produces
the estimate of 0.44 MeV for the 7Li ground-state energy which
is quoted in parenthesis next to the eigenvalue in Table I.

We observe a similarity in the Nmax dependence or results
in Figs. 1 and 2. In both cases, our estimated uncertainties
range up to several hundred keV (see Table I). However, in
the absence of a firm trend in Nmax for our results, one should
not take our quoted uncertainties as estimates of numerical
accuracy but rather as characteristics of the dependence of the
results on the presently available basis spaces.
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FIG. 3. (Color online) Calculated and experimental excitation
energies of 7Li. Dependence on the size of the basis is presented.
The chiral EFT NN and NNN interaction was used. The isospin of
the states is T = 1/2 unless shown otherwise. See the text for further
details.

We show the low-lying spectra of 7Li in Fig. 3 at the
optimum frequency and at the sequence of Nmax truncations
corresponding to the curves in Fig. 1. The energies, radii, and
electromagnetic observables are summarized in Tables I and
II, where we also include the 7Be results. We obtain the same
level ordering for 7Be and 7Li which is also the same for both
NN and the NN + NNN interactions with the exception of
a reversal of the 7/2−

2 and 3/2−
2 levels in 7Be. That is, in 7Be,

the experimental 7/2−
2 and 3/2−

2 levels are reversed compared
to our results and the situation in 7Li. On the other hand, our
NN + NNN ordering is in agreement with experiment for the
nine lowest states in 7Li.

Our calculated spectra for both of the A = 7 nuclei show a
reasonable stability with respect to the frequency change. The
results in Table I (and A = 8 results in Tables III and VI below)
indicate that there are residual differences between theoretical
and experimental energies that are significantly larger than
our quoted basis-space dependence of the calculated results. It
will be interesting to see if the differences between theory and
experiment persist once more accurate calculations become
feasible. If they do, the question becomes whether these
differences are significantly reduced, for example, when a
chiral NNN interaction becomes available that is more
complete than the one currently available [33].

We present in Table II a selection of results for magnetic
moments, M1 transitions and other properties of the A = 7
nuclei. All electromagnetic observables are evaluated with the
free-space electromagnetic coupling constants. That is, we do
not employ effective charges or effective magnetic moments
for the nucleons.

The results in Table II with NN alone and NN + NNN
interactions are both in reasonable agreement with experiment.
One observes that there is a trend for radii and quadrupole
moments to increase with increasing basis size and/or de-
creasing frequency. This is, in part, a consequence of the
incorrect asymptotics of the HO basis and also our basis-space

014327-4
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Some highlight achievements:

• Can get spectra of light nuclei ”from first principles”

Maris et al PRC 90, 014314 (2014)

12C with chiral 2+3 body forces

Hoyle state
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By looking at the group-
theoretical decomposition,
we can even show that 
the valence-space 
empirical and ab initio
multi-shell wave functions
have similar structure! 

20Ne
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Maris et al PRC 90, 014314 (2014)

12C with chiral 2+3 body forces

Hoyle state

The Hoyle state in 
12C is a problem!
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Haxton and Johnson, PRL 65, 1325 
(1990)

There’s a similar state 
in 16O

VOLUME 65, NUMBER 11 PHYSICAL REVIEW LETTERS 10 SEPTEMBER 1990
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mined by the Lanczos algorithm, with about 270 itera-
tions yielding full convergence for the ten lowest-energy
states. In the spirit of BG, the strong interaction was
only allowed to operate within the Ip-2s ld shells. (This
choice also eliminates large 2hro and 4hro lplh ampli-
tudes that could mix into the low-lying states only be-
cause the shell-model interaction does not properly
respect the Hartree-Fock condition. ) The adopted Oh'
Hamiltonian was formed from the Cohen and Kurath
1p-shell interaction, the Brown and Wildenthal 2s1d-
shell interaction, and the Millener and Kurath cross-shell
interaction, with the four single-particle energy splittings
fitted to the isoscalar even-J states. We used the bare
Kuo g matrix for V "". All configurations were al-
lowed to interact through the center-of-mass Hamiltoni-
an H, , and spurious components were removed by add-
ing a large multiple of H, to the potential described
above. The same Hamiltonian was used in a 3hro calcu-
lation of the negative-parity states.
The calculated and experimental isoscalar spectra of

Fig. 1 are in very good agreement. We also show the
spectrum that would result from diagonalizing H in a
2hro model space. This illustrates the importance of the
2t1ro-4hro interaction in reducing the energy splitting
between the ground state and those states that are pri-
marily 2ttro in character (e.g. , the 01+-21+ splitting is
lowered by almost 8 MeV). The quality of the isovector
spectrum is similar to that of Fig. 1, with the lowest five
states in ' F well reproduced. A low-lying 0+1 state
(-16 MeV) not seen experimentally is predicted. The

isovector 0, 1,2,3 group is also nicely reproduced.
The principal diSculty with the isoscalar negative-parity
spectrum is the failure to generate a second 1 0 state
near 9.59 MeV.
Table I shows the OpOh, 2p2h, and 4p4h probabilities

of the first 0+ states in our calculation and in that of
BG. (Note that the 0+ 12.29-MeV state is the correct
analog of the 03+ BG state, since the nearby 0+ state at
12.80 MeV is 73% 4p4h. ) In the schematic model the
OpOh probability summed over the three 0+ states must
give 1, while in the shell model it mixes with the full set
of 0+ states in the 4hro space. As the OpOh fraction in
the first three states is about 50%, the 2p2h and 4p4h
shell-model fractions must be correspondingly larger.
Despite this, the schematic and shell-model results are
not too different: The correspondence for the 6.05-
MeV state, which is primarily a 4p4h state, is very close,
while both calculations conclude that about 70% of the
strength in the 03+ state is 2p2h.
The large intrinsic quadrupole moments that are pos-

tulated in the schematic model provide a simple explana-
tion of the enhancements found in ' 0 E2 transitions.
We can now test whether this physics emerges from the
shell-model and realistic WV interactions. As the shell
model makes no explicit assumption about the single-
particle basis, one must interpret the E2 transition densi-
ty matrices in terms of suitable radial wave functions.
We have used Ginocchio potential wave functions,
which are algebraic and yet closely resemble numerical
finite-well wave functions (such as Woods-Saxon). The
parameters of this potential were adjusted to reproduce
the elastic (e,e') form-factor diA'raction minimum and
the height and location of the second diA'raction max-
imum, as well as the 1pii2 and lp3i2 binding energies.
The single-particle spherical shell model for ' 0 pro-
duces an unbound 113/2 state, and in this respect does
not provide an appropriate basis for interpreting transi-
tion density matrices between bound states. In a de-
formed well this problem need not arise, since the d3/2
amplitudes could be sensibly associated with bound
Nilsson orbitals. We avoid this complication by appeal-
ing to the schematic model, where the sd-shell excita-
tions of ' 0 involve a single bound Nilsson level (No. 6).
This motivates our choice of a single binding energy for
the sd-shell orbits in the Ginocchio well, which we take
as the average of the shell-model 2sii2, 1d~i2, and 1d3/2

0
0 0

TABLE I. Comparison of the shell-model (SM) and BG
OpOh, 2p2h, and 4p4h probabilities for the first three 0+ states

l 6~

expt 4b ~ g.S.
Probability BG SM

02+ (6.05 MeV)
BG SM

0+
BG SM

FIG. 1. A comparison of experiment and the 4hco ' 0
shell-model spectrum of T=O states. The spectrum resulting
from diagonalizing the same Hamiltonian in a 2hco space is
also shown.

OpOh
2p2h
4p4h

0.76 0.42 0.07
0.22 0.45 0.05
0.02 0.1 3 0.88

0.04
0.05
0.90

0.17 0.03
0.73 0.68
0.10 0.30
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One can think of 
these as alpha-
cluster states
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These cluster states are not easy to 
reproduce in the NCSM.

They may require as much as 30hw
excitations in a h.o. basis (T. Neff),

yet they appear low in the spectrum
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Figure 6. Decomposition of the 12C ground state and the Hoyle state into Nh̄Ω components
for oscillator constants of 20 MeV (left) and 12 MeV (right).

than 8 or 10. It is therefore not surprising that the NCSM calculations for the ground state can
be converged. For the Hoyle state however, the distribution extends over a very large range of
Nh̄Ω. It is therefore clear that the Hoyle state can not be converged in NCSM calculations with
Nmax = 8 or even 10. The situation looks somewhat better for an oscillator parameter of 12 MeV
as shown on the right hand side of Fig. 6. Here the distribution for the Hoyle state peaks at
N = 8 and decays much more rapidly with N . However, standard NCSM calculations will not
be able to reach large enough spaces. Maybe approaches like the importance truncated no-core
shell model [29] or the symmetry adapted no-core shell model [30] will allow the description of
the Hoyle state within the oscillator basis in the future.
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T. Neff, J. Phys. Conf. Ser. 403 012028 (2012)

5. Cluster States in 12C
The structure of the second 0+ state in 12C, the famous Hoyle state, is still one of the hottest
topics in nuclear structure. In [23] we investigated the structure of the Hoyle state using the
FMD approach. The model space consisted of configurations obtained by variation and a full
set of three-α configurations. A UCOM interaction with some phenomenological modifications
regarding the strength of the spin-orbit force and the saturation properties of the two-body
interaction was used in that calculation. We compared the results with a microscopic cluster
model using a phenomenological Volkov interaction. These cluster model calculations reproduced
previous results by Kamimura [24] and are also very close to those obtained by Funaki et al. [25].
We found for both models that the Hoyle state has a very dilute, extended three-α structure.
This is illustrated in Fig. 4 where we show the intrinsic FMD basis states that have the largest
overlap with the ground state and the Hoyle state.

We used these wave functions also to calculate the transition form factor from the ground state
to the Hoyle state. This transition form factor can be directly compared to electron scattering
data [23, 26]. The good agreement of calculation and experiment is a strong confirmation for a
spatially extended structure for the Hoyle state.

5.1. Two-body densities
Observables like radii and form factors are scalar quantities that provide information about
the size of the states but they do not provide direct information about the structure of the
states. The old question whether the Hoyle state should be interpreted as a linear chain of
α-particles, a triangular structure or a gas-like structure can therefore not be answered directly
by these experimental observables. There is also the questions of how we should compare the
wave functions obtained in different many-body approaches like the cluster model, the no-core
shell model or as obtained on the lattice [27].

In case of FMD or the cluster model the individual basis states can be easily interpreted
in terms of the intrinsic structure as shown in Fig. 4. However the eigenstates are linear
combinations of many basis states and the non-orthogonality of the basis states might question
the validity of the obtained picture.

To remedy this situation we propose to use two-body densities to analyze the structure of the
12C eigenstates. In Fig. 5 we show the diagonal part of the two-body density integrated over the
center-of-mass coordinates and summed over all spin-isospin channels which can be expressed
as

ρ(2)(r) =
〈

Ψ
∣

∣

∑

i<j

δ(r̂i − r̂j − r)
∣

∣Ψ
〉

. (4)

The two-body density ρ(2)(r) tells us about the probability to find a pair of nucleons at a
given distance r. In the case of 12C where we expect an intrinsic α-cluster structure the two-body
density should directly reflect the correlations between the α-clusters. The two-body density
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Figure 4. (Left) Intrinsic FMD basis state that has the largest overlap with the ground state.
(Right) The four intrinsic FMD basis states that have the largest overlaps with the Hoyle state.
The basis states are not orthogonal.
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See also: S. Shen, D. Lee, et al,
 Nat. Commun. 14 (2023) 2777
(arXiv:2202.13596 ) for similar 
results on the lattice

12C Hoyle state main FMD configurations.
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So basically we have the 
intruder state problem all 

over again! 



FRIB-TA Workshop, May 26 2023

VOLUME 65, NUMBER 11 PHYSICAL REVIEW LETTERS 10 SEPTEMBER 1990

l5—

Ip—
0)

p+
p+ p+
+~ )+

4+
2'

g+

i p+
I+
2+

r P+

p+

4+
2+

+gp

4+
3+
4+
2+

2+
p+

5—

0 p+

mined by the Lanczos algorithm, with about 270 itera-
tions yielding full convergence for the ten lowest-energy
states. In the spirit of BG, the strong interaction was
only allowed to operate within the Ip-2s ld shells. (This
choice also eliminates large 2hro and 4hro lplh ampli-
tudes that could mix into the low-lying states only be-
cause the shell-model interaction does not properly
respect the Hartree-Fock condition. ) The adopted Oh'
Hamiltonian was formed from the Cohen and Kurath
1p-shell interaction, the Brown and Wildenthal 2s1d-
shell interaction, and the Millener and Kurath cross-shell
interaction, with the four single-particle energy splittings
fitted to the isoscalar even-J states. We used the bare
Kuo g matrix for V "". All configurations were al-
lowed to interact through the center-of-mass Hamiltoni-
an H, , and spurious components were removed by add-
ing a large multiple of H, to the potential described
above. The same Hamiltonian was used in a 3hro calcu-
lation of the negative-parity states.
The calculated and experimental isoscalar spectra of

Fig. 1 are in very good agreement. We also show the
spectrum that would result from diagonalizing H in a
2hro model space. This illustrates the importance of the
2t1ro-4hro interaction in reducing the energy splitting
between the ground state and those states that are pri-
marily 2ttro in character (e.g. , the 01+-21+ splitting is
lowered by almost 8 MeV). The quality of the isovector
spectrum is similar to that of Fig. 1, with the lowest five
states in ' F well reproduced. A low-lying 0+1 state
(-16 MeV) not seen experimentally is predicted. The

isovector 0, 1,2,3 group is also nicely reproduced.
The principal diSculty with the isoscalar negative-parity
spectrum is the failure to generate a second 1 0 state
near 9.59 MeV.
Table I shows the OpOh, 2p2h, and 4p4h probabilities

of the first 0+ states in our calculation and in that of
BG. (Note that the 0+ 12.29-MeV state is the correct
analog of the 03+ BG state, since the nearby 0+ state at
12.80 MeV is 73% 4p4h. ) In the schematic model the
OpOh probability summed over the three 0+ states must
give 1, while in the shell model it mixes with the full set
of 0+ states in the 4hro space. As the OpOh fraction in
the first three states is about 50%, the 2p2h and 4p4h
shell-model fractions must be correspondingly larger.
Despite this, the schematic and shell-model results are
not too different: The correspondence for the 6.05-
MeV state, which is primarily a 4p4h state, is very close,
while both calculations conclude that about 70% of the
strength in the 03+ state is 2p2h.
The large intrinsic quadrupole moments that are pos-

tulated in the schematic model provide a simple explana-
tion of the enhancements found in ' 0 E2 transitions.
We can now test whether this physics emerges from the
shell-model and realistic WV interactions. As the shell
model makes no explicit assumption about the single-
particle basis, one must interpret the E2 transition densi-
ty matrices in terms of suitable radial wave functions.
We have used Ginocchio potential wave functions,
which are algebraic and yet closely resemble numerical
finite-well wave functions (such as Woods-Saxon). The
parameters of this potential were adjusted to reproduce
the elastic (e,e') form-factor diA'raction minimum and
the height and location of the second diA'raction max-
imum, as well as the 1pii2 and lp3i2 binding energies.
The single-particle spherical shell model for ' 0 pro-
duces an unbound 113/2 state, and in this respect does
not provide an appropriate basis for interpreting transi-
tion density matrices between bound states. In a de-
formed well this problem need not arise, since the d3/2
amplitudes could be sensibly associated with bound
Nilsson orbitals. We avoid this complication by appeal-
ing to the schematic model, where the sd-shell excita-
tions of ' 0 involve a single bound Nilsson level (No. 6).
This motivates our choice of a single binding energy for
the sd-shell orbits in the Ginocchio well, which we take
as the average of the shell-model 2sii2, 1d~i2, and 1d3/2

0
0 0

TABLE I. Comparison of the shell-model (SM) and BG
OpOh, 2p2h, and 4p4h probabilities for the first three 0+ states

l 6~

expt 4b ~ g.S.
Probability BG SM

02+ (6.05 MeV)
BG SM

0+
BG SM

FIG. 1. A comparison of experiment and the 4hco ' 0
shell-model spectrum of T=O states. The spectrum resulting
from diagonalizing the same Hamiltonian in a 2hco space is
also shown.

OpOh
2p2h
4p4h

0.76 0.42 0.07
0.22 0.45 0.05
0.02 0.1 3 0.88

0.04
0.05
0.90

0.17 0.03
0.73 0.68
0.10 0.30
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One can phenomenologically reproduce spectra
for example, by adjusting single particle energies

16O  Haxton & CWJ,  PRL  65 (1990) 1325 
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One can phenomenologically reproduce spectra
for example, by adjusting single particle energies

B. Dai, CWJ, et al,  PRC 103, 064327 (2021)

(adjust s.pe.s to fit levels in 15,17O 
relative to 16O) 

TENSOR FORCE ROLE IN β DECAYS ANALYZED … PHYSICAL REVIEW C 103, 064327 (2021)

FIG. 3. Shell-model calculations of spectra for carbon isotopes, with the effective interaction derived from the D1S Gogny interaction
without and with the tensor force, indicated by D1S and D1S+T, respectively. The experimental data [33] and calculations using the WBP
interaction [15] are shown for comparisons.

FIG. 4. L decomposition for the g.s. wave functions of 14C
(a) and 14N (b) in the β decay of 14C(0+

g.s. ) → 14N(1+
g.s. ). The symbols

of D1S, D1S+T1 and D1S+T1+T0 indicate the calculations with
the D1S interaction only, the T1 tensor force added and both T1+T0
tensor forces included, respectively.

space beyond the p shell, indicating the importance of cross-
shell matrix elements.

While we have focused on the coupling of different
L components via the tensor forces, another recent analysis fo-
cused on the role of isoscalar pairing [43], which can become
incoherent depending on the relative sign of specific interac-
tion matrix elements (in the case of the 14C GT transition,

FIG. 5. The calculated GT transition strength M(GT) =∑Lmax
L=0 Meff

L (GT) for the 14C(0+
g.s. ) → 14N(1+

g.s. ) decay, with and
without the tensor forces. The experimental transition strength
is extracted by Mexp =

√
(2Ji + 1)Bexp(GT) [2].The insertion

displays the calculated individual effective transition strength Meff
L at

L = 2, 3, 4, separately, showing the cross-shell effects.

064327-5

Hoyle state
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One can phenomenologically reproduce spectra
or by adjusting the strength of an SU(3) Casimir

B. Dai, CWJ, et al,  PRC 103, 064327 (2021)

(adjust s.pe.s to fit levels in 15,17O 
relative to 16O) 

Hoyle state

From Dreyfuss, Launey, et al,
PLB 727, 511 (2013)
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(adjust s.pe.s to fit levels in 15,17O 
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Hoyle state

From Dreyfuss, Launey, et al,
PLB 727, 511 (2013)

512 A.C. Dreyfuss et al. / Physics Letters B 727 (2013) 511–515

Fig. 1. Sp(3,R) irreps (slices) that comprise the spin-zero model space used for the 12C NCSpM calculations. Basis states (λµ) of a slice are built by 2h̄Ω 1p–1h monopole
or quadrupole excitation (Set II) over a bandhead. The symplectic bandhead (Set I) is a SU(3)-coupled many-body state with a given nucleon distribution over the HO shells.
The corresponding HO energy of this nucleon configuration together with the bandhead deformation, (λσ µσ ), serve to label the symplectic irrep.

states) together with low-lying states suggested to have a clus-
ter structure (0+

2 Hoyle state and its 2+ and 4+ excitations), as
well as a third low-lying 0+

3 state in 12C. We focus on excitation
energies and other observables such as matter rms radii, electric
quadrupole moments and E2 transition rates, as well as compare
to wavefunctions obtained by ab initio shell-model calculations us-
ing a realistic NN interaction. With no parameter adjustment, the
present model we find is also extensible to other light nuclei, as
demonstrated [17], for example, for the g.st. rotational band of 8Be
(and its low-lying 0+ states) as well as of 22Ne and 22,24Mg.

Symmetry-adapted shell-model framework. We employ the no-
core symplectic model (NCSpM) for symmetry-preserving interac-
tions with Sp(3,R) the underpinning symmetry [18]. This sym-
metry is found inherent to nuclear dynamics – a result we have
demonstrated in an analysis of large-scale ab initio NCSM applica-
tions for 12C and 16O [19]. The model offers a microscopic descrip-
tion of A nucleons in terms of mixed deformation configurations
and associated rotations [20], directly related to particle relative
(with respect to the center of mass, CM) position and momentum
coordinates, ri and pi , with i = 1, . . . , A. It has been successfully
applied to 20Ne [21] with a 16O core, as wells as to 166Er using
the Davidson potential [22]. It is a microscopic realization of the
Bohr–Mottelson collective model [16], as well as a multiple HO
shell generalization of Elliott’s SU(3) model [15].

The NCSpM utilizes a symplectic basis (for details, see [23]),
which is related – via a unitary transformation – to the three-
dimensional HO (m-scheme) many-body basis used in the NCSM
[24]. The NCSM basis is constructed using HO single-particle states.
It is characterized by the h̄Ω oscillator strength and by the cut-
off in total excitation oscillator quanta, Nmax. Indeed, the NCSpM
employed within a full model space up through Nmax, will coin-
cide with the NCSM for the same Nmax cutoff. It is therefore clear
that the present study, while down-selecting to the most relevant
configurations, provides the first shell-model calculations carried
beyond current NCSM limits. These important configurations are

chosen among all possible symplectic Sp(3,R) irreducible repre-
sentations (irreps) within the model space.

The Sp(3,R) irreps divide the space into ‘vertical slices’ that are
comprised of basis states of definite (λµ) quantum numbers of
SU(3) (Fig. 1) linked to the intrinsic quadrupole deformation [25].
E.g., the simplest cases, (0 0), (λ0), and (0µ), describe spherical,
prolate, and oblate deformation, respectively, while a general nu-
clear state is typically a superposition of several hundred various
triaxial deformation configurations. The basis states are built over
a bandhead (Fig. 1, Set I) by consecutive 2h̄Ω 1p–1h (1-particle–
1-hole) excitations (Fig. 1, Set II), together with a smaller 2h̄Ω
2p–2h (two particles a shell up) correction for eliminating the
spurious CM motion (not shown in the figure). In the NCSpM,
to eliminate the spurious CM motion, we use symplectic gener-
ators constructed in relative coordinates with respect to the CM.
These generators are used to build the basis, the interaction, the
many-particle kinetic energy operator, as well as to evaluate ob-
servables.

For the purposes of this study, we utilize a microscopic many-
body interaction suitable for large-Nmax no-core shell-model ap-
plications. Specifically, along with the usual spin-orbit term, we
employ an elementary form tied to a long-range expansion of the
nucleon–nucleon central force V (|ri − r j |) [26] kept as simple as
possible by considering the most relevant degrees of freedom for a
description of deformed spatial configurations [15,16],

Hγ =
A∑

i=1

(
p2

i

2m
+ mΩ2r2

i

2

)
+ χ

2
(e−γ Q ·Q − 1)

γ

− κ
A∑

i=1

li · si . (1)

This Hamiltonian is given in terms of particle coordinates relative
to the CM, with Q (2M) = ∑A

i=1 q(2M)i = ∑
i
√

16π/5r2
i Y(2M)(r̂i)

the mass quadrupole moment and with 1
2 Q · Q = 1

2
∑

i qi · (
∑

j q j)



FRIB-TA Workshop, May 26 2023 29

One can phenomenologically reproduce spectra
or by adjusting the strength of an SU(3) Casimir

B. Dai, CWJ, et al,  PRC 103, 064327 (2021)

(adjust s.pe.s to fit levels in 15,17O 
relative to 16O) 

Hoyle state

From Dreyfuss, Launey, et al,
PLB 727, 511 (2013)

But this is a 4hw calculation,
at variance with the 30+ hw 

of Neff and others 

So are our ‘simple’ 
pictures of these new 
intruders correct? 
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Furthermore, 
the islands of inversions 

and halo nuclei 
form a similar challenge to 

standard shell-model pictures
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CASE STUDY: 11LI
11Li makes for an excellent case study:

• Example of “island of inversion”

• Halo or extended state

• Small enough to be tackled numerically

• Testbed for techniques
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One proton outside a 
filled shell 
+ filled neutron shell

One proton outside a 
filled shell 
+ neutron 2p-2h

“island of inversion”

CASE STUDY: 11LI
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CASE STUDY: 11LI
11Li makes for an excellent case study

(The following results are preliminary)

3/2- g.s. is a halo state and on an island of inversion
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CASE STUDY: 11LI
11Li makes for an excellent case study

Calculations with Entem-Machleidt N3LO chiral 
(no 3-body) at hW = 20 MeV.

Also computed with natural orbitals
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CASE STUDY: 11LI
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CASE STUDY: 11LI
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CASE STUDY: 11LI

Mark Caprio

“The ratio Qp/r2p agrees
 very well with experiment!”
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CASE STUDY: 11LI
“The ratio Qp/rp agrees

 very well with experiment!”

Mark Caprio
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CASE STUDY: 11LI

Mark Caprio

“The ratio Qp/r2p agrees
 very well with experiment!”

But let’s dig in deeper
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CASE STUDY: 11LI
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CASE STUDY: 11LI

3/21-

3/22-
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CASE STUDY: 11LI

3/21-

3/22-
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CASE STUDY: 11LI

Mark Caprio

“The ratio Qp/r2p agrees
 very well with experiment…

for both 3/2- states!”
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CASE STUDY: 11LI
“The ratio Qp/rp agrees

 very well with experiment!”

Mark Caprio
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CASE STUDY: 11LI

We can use the shell 
model to dissect the 

wavefunctions 
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CASE STUDY: 11LI

Group-
theoretical
Decomposition

Elliot SU(3)
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CASE STUDY: 11LI

Group-
theoretical
Decomposition

Symplectic
Sp(3,R)
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CASE STUDY: 11LI

“E2” response

Probably not expt
measurable, but 
double-hump 
illuminates deformation
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CASE STUDY: 29F
29F is an analog of 11Li

One proton outside a 
filled shell 
+ filled neutron shell

One proton outside a 
filled shell 
+ neutron 2p-2h

“island of inversion”
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CASE STUDY: 29F
29F is an analog of 11Li (calculations done this week!)

Nmax = 4, natural orbitals
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CASE STUDY: 29F
29F is an analog of 11Li (calculations done this week!)

Nmax = 4, natural orbitals
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CASE STUDY: 29F

Nmax = 4, natural orbitals

Group-
theoretical
Decomposition

Symplectic
Sp(3,R)
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CASE STUDY: 29F

Nmax = 4, natural orbitals

Group-
theoretical
decomposition

SU(4)
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CASE STUDIES: 11LI, 29F

I suggest 11Li, 29F as case studies for other methods
(coupled cluster, IM-SRG, symmetry adapted, 
lattice, etc.).
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CASE STUDIES: 11LI, 29F

I suggest 11Li, 29F as case studies for other methods
(coupled cluster, IM-SRG, symmetry adapted, 
lattice, etc.).

We should also look for experimental observables to 
test our calculations (since the quadrupole moment, in 
11Li at least, does not differentiate between states).
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So what have we learned?

The no-core shell model 
reproduces some features 

easily 
but others are 

very challenging!
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These calculations were 
performed with an M-scheme 
(fixed-Jz) on-the-fly code.

Such on-the-fly codes 
(ANTOINE, BIGSTICK, etc) are 
extremely efficient (CWJ et al, 
Comp. Phys.Comm. 184, 2761(2013) )

But even those codes have 
their limits
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What are possible 
strategies for extending

the reach of the 
shell model?
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Strategies for moving forward

• Many-body bases: algebraic and other cluster bases
(see talks by (Caprio?) McCoy, Volya)

• Many-body bases from single-particle: projected 
Hartree-Fock + GCM (see talk by Nowacki)

• Proton-neutron truncated basis

• Energy-truncation of shell-model basis
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Strategies for moving forward

• Many-body bases: algebraic and other cluster bases
(see talks by McCoy, Volya)

• Many-body bases from single-particle: projected 
Hartree-Fock + GCM (see talk by Nowacki)

• Proton-neutron truncated basis

• Energy-truncation of shell-model basis
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Symplectic Sp(3,R) Symmetry

(From K. Launey, LSU)
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8Be, 0gs 
+ 

0ħω: 42.5% 

2ħω: 29.4% 

4ħω: 14.3% 

6ħω: 8.4% 

8ħω: 5.4% 

79
.4
%

2.
9%

2.
0%

1.2
%

1.4
% N3LO

JISP16

N3LO

Launey et al., Prog. Part. Nucl. Phys. 89 (2016) 101
Dytrych et al., Phys. Rev. Lett. 111 (2013) 252501
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Collectivity features

0 

5 

10 

15 

20 

25 

30 

0+
2+
0+
2+

2+
2+

0+
2+

0+
2+

(4 0) S=0
(0 2) S=0

(2 1) S=1

Giant 
resonances

N2LOopt; 9 shells, ħω = 15 MeV
 

18Ne, B(E2: 2+->0+)
------------------------
Experiment……… 17.7(18) W.u.

9 shells …………… 1.13 W.u.

33 shells …………. 13.0(7) W.u.
(no effective charges)

01
+ 0 0.000

21
+ 0 1.634

41
+ 0 4.248

61
+ 0 8.778

0.000

1.582

4.175

8.621

Exp X2\10 SA-NCSM

20Ne

0

2

4

6

8

10
E x
@M

eV
D

13 shells 
SA-NCSM (selected model space): 50 million SU(3) states 
Complete model space: 1000 billion states

Ne & Mg isotopes

Grigor Sargsyan, PhD student, LSU
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Group theory may be a 
natural framework for 
cluster physics

Kravvaris & Volya, PRL 119,
062501 (2017)

F lðρÞ ¼
X

n

χnΦnl: ð4Þ

The form of this expansion is determined variationally
using the generalized eigenvalue problem

X

n

HðlÞ
nn0χn0 ¼ E

X

n

N ðlÞ
nn0χn0 ; ð5Þ

where

HðlÞ
nn0 ¼ hΦnljHjΦn0li and N ðlÞ

nn0 ¼ hΦnljΦn0li: ð6Þ

The channel normalization requires
P

nN
ðlÞ
nn0χ

$
nχn0 ¼ 1.

Now, the Hamiltonian is used to establish the reaction
channels dynamically. For two-body reactions, the pro-
cedure amounts to an expansion of the relative motion in a
HO basis, where the expansion index n is the number of
nodes in the relative motion. For large n, which are
associated with large relative separation of the two frag-
ments, the basis channels Φnl become orthogonal and the
matrix elements of the relative motion Hamiltonian are
given by Coulomb and kinetic energy matrix elements that
are known analytically.
In general, these intermediate-range RGM solutions

should be properly matched or combined in the Hilbert
space with the asymptotic ones through other techniques
such as R matrix or CSM. For long-lived resonances, the
continuum coupling is weak and does not modify the
structure; in this limit, the perturbation theory is applicable;
therefore, Fermi’s golden rule and the spectroscopic ampli-
tudes characterize decay and reaction observables.
Let us demonstrate the approach using a well-known

8Be → αþ α example which, due to numerous previous
theoretical studies [7,23,54,55], emerged as a benchmark
for clustering methods. In addition, 8Be is a stark example
of collectivity and rotations in the continuum [3,56] where,
as being well established experimentally in many light
nuclei [6,8,9,57], strongly clustered rotational bands sur-
vive the complexity of many-body dynamics. In the limit
where a channel is constructed from two α particles with
structure limited to α½0', the norm kernel is diagonal and
nonzero only when 2nþ l ≥ 4 and l is even; it can be
computed analytically [58]:

N ðlÞ
nn0 ¼ δnn02ð1 − 22−2n−lÞ: ð7Þ

An example with four quanta in relative motion
(Nc ¼ 2nþ l) is included in Table I. Result (7) highlights
the bosonic nature of the α particle: Only even l are
allowed and with a growing number of quanta in the
relative motion, N ðlÞ

nn ≈ 2.
In Fig. 1, we show the spectrum of the RGM

Hamiltonian (5) computed using the SRG softened N3LO
nucleon-nucleon interaction with a softening parameter

λ ¼ 1.5 fm−1 [59,60]. The results from the corresponding
NCSM calculation 8Be½Nmax ¼ 4' and the experimental
spectrum are included for comparison. The radial part of
the RGM wave function for different values of l is shown
in the inset. The channel states are limited to a maximum
number of relative quanta Nc ≤ 12. Tests with different
Hamiltonians, with different values of ℏΩ, and with various
truncations by oscillator quanta in the relative α − α motion
ðNcÞ, as well as using more complex NCSM configurations
for the α, indicate that this is a generic result. Additional
details and comparisons can be inferred from the data in
Table II.
In comparison to the experiment, the relative energies

and the rotational band states 0þ, 2þ, and 4þ are well
reproduced. The full no-core calculation, which in general
includes cluster channels, naturally leads to a lower
absolute binding energy, but our results suggest that these
states in 8Be are indeed nearly indistinct from αþ α RGM
solutions. This structural information is highlighted by the
large overlaps between parent states Ψ and RGM channels
F l shown in Table II.
For the example in Fig. 1, the validity of expansion (4)

with 2nþ l ¼ Nc ≤ 12 is expected up to about ρ ∼ 4 fm.
Beyond that, the norm kernel transforms into that of

FIG. 1. Spectrum of RGM Hamiltonian with the SRG softened
N3LO interaction (λ ¼ 1.5 fm−1) and ℏΩ ¼ 25 MeV for a 2α
system. Zero on the energy scale is set by the αþ α breakup
threshold of the corresponding model. Levels are marked by spin
and parity and by an absolute binding energy in units of MeV.
The α binding energies for the α½0' and NCSM ðα½4'Þ calculations
are −26.08 and −28.56 MeV, respectively. The inset shows the
relative wave function of the two α clusters.

PRL 119, 062501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

11 AUGUST 2017

062501-3
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Strategies for moving forward

• Many-body bases: algebraic and other cluster bases
(see talks by McCoy, Volya)

• Many-body bases from single-particle: projected 
Hartree-Fock + GCM (see talk by Nowacki)

• Proton-neutron truncated basis

• Energy-truncation of shell-model basis
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Strategies for moving forward

• Many-body bases: algebraic and other cluster bases
(see talks by McCoy, Volya)

• Many-body bases from single-particle: projected 
Hartree-Fock + GCM (see talk by Nowacki)

• Proton-neutron truncated basis

• Energy-truncation of shell-model basis
These alternatives are not 

without challenges!
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J-scheme matrices are smaller but much denser than
M-scheme, and “symmetry-adapted” (i.e. SU(3)) 
matrices are smaller (and denser) still.

example:  12C Nmax = 8

scheme basis dim      # of nonzero matrix elements
M     6 x 108   5 x 1011

J (J=4)    9 x 107   3 x 1013

SU(3)    9 x 106   2 x 1012

(truncated) 
From Dytrych, et al, arXiv:1602.02965
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J-scheme matrices are smaller but much denser than
M-scheme, and “symmetry-adapted” (i.e. SU(3)) 
matrices are smaller (and denser) still.

example:  12C Nmax = 8

scheme basis dim      # of nonzero matrix elements
M     6 x 108   5 x 1011

J (J=4)    9 x 107   3 x 1013

SU(3)    9 x 106   2 x 1012

(truncated) 
From Dytrych, et al, arXiv:1602.02965



FRIB-TA Workshop, May 26 2023 68

J-scheme matrices are smaller but much denser than
M-scheme, and “symmetry-adapted” (i.e. SU(3)) 
matrices are smaller (and denser) still.

example:  12C Nmax = 8

scheme basis dim      # of nonzero matrix elements
M     6 x 108   5 x 1011 4 Tb of memory!
J (J=4)    9 x 107   3 x 1013    240 Tb of memory!
SU(3)    9 x 106   2 x 1012    16 Tb of memory!
(truncated) 

From Dytrych, et al, arXiv:1602.02965

large dimension

but least amount of  work!
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Choice of wave function basis 

One chooses between a few, complicated states
or  many simple states 

M-scheme      J-scheme    SU(3)  GCM       coupled-cluster

1

1010

108

10 6

(not really diagonalization)
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Choice of wave function basis 

One chooses between a few, complicated states
or  many simple states 

1

1010

108

10 6

(not really diagonalization)
M-scheme      J-scheme    SU(3)  GCM       coupled-cluster

Dimension
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Choice of wave function basis 

One chooses between a few, complicated states
or  many simple states 

1

1010

108

10 6

(not really diagonalization)
M-scheme      J-scheme    SU(3)  GCM       coupled-cluster

Difficulty
to generate
matrix elements

Dimension
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Choice of wave function basis 

One chooses between a few, complicated states
or  many simple states 

1

1010

108

10 6

(not really diagonalization)
M-scheme      J-scheme    SU(3)  GCM       coupled-cluster

Difficulty
to generate
matrix elements

Dimension

Are there ways we can 
harness the efficiency of 
on-the-fly but still get to 

larger spaces?
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Strategies for moving forward

• Many-body bases: algebraic and other cluster bases
(see talks by McCoy, Volya)

• Many-body bases from single-particle: projected 
Hartree-Fock + GCM (see talk by Nowacki)

• Proton-neutron truncated basis

• Energy-truncation of shell-model basis
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Alternate approach for medium/heavy nuclei:
Proton-neutron factorization

!
Ψ = cµν pµ

µν
∑ nν

Can we truncate to just a few components?

Gorton and CWJ,  J. Phys. G 50, 045110 (2023).
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!
Ψ = cµν pµ

µν
∑ nν

No longer single “Slater determinants” but 
linear combinations…

!! a1 010110... +a2 110010... +a3 001011... + .....( )

Alternate approach for medium/heavy nuclei:
Proton-neutron factorization
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!
Ψ = cµν pµ

µν
∑ nν

Can we truncate to just a few components?

Priori work by Papenbrock, Juodagalvis, Dean, 
Phys. Rev. C 69, 024312 (2004), focused on N =Z

similar to DMRG (density-matrix renormalization group)
(but not exactly)

Alternate approach for medium/heavy nuclei:
Proton-neutron factorization
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Why we think this could work:
Decompose full wfn into proton, neutron components

!
Ψ = cµν pµ

µν
∑ nν

𝑓𝑟𝑎𝑐! =&
"

𝑐!"
#

(one can compute this very efficiently with 
the Lanczos algorithm, using just the 
proton part of the full Hamiltonian)

= fraction of full wave function with 
proton (eigen)state µ
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52Fe in pf-shell with GX1A interaction

decomposition of g.s.

Note exponential 
(Boltzmann) fall-off

These energies are the eigenenergies of 6 valence protons in the pf shell 
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pf-shell with GX1A interaction

decomposition into proton components

Note exponential 
(Boltzmann) fall-off
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Example application:

shells between 50 and 82 (0g7/2 2s1d 0h11/2)

129Cs: M-scheme dim 50 billion (haven’t tried!)

Proton Slater determinant dimension: 14,677
Neutron Slater determinant dimension: 646,430
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We have written a code (O. Gorton)  
Proton And Neutron Approximate Shell model:

PANASh

We want to find solutions to

                               where

  We solve  

  and  choose certain                             as basis for   diagonalization;

!!Ĥ Ψ = E Ψ !!Ĥ = Ĥpp + Ĥnn + Ĥp

!!Ĥpp Ψp = Ep Ψp !!Ĥnn Ψn = En Ψn

!
Ψp Ψn

n
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Using BIGSTICK we construct many-proton states of good J

!!
Ψp , JpM = cµ pµ ,M

µ
∑

and the same for many-neutron states; these we couple 
together in a J-scheme code with fixed J for basis:

!!
Ψ J = cab Ψpa, Jp ⊗ Ψnb, Jn⎡

⎣
⎤
⎦

ab
∑

J

Oliver Gorton

We don’t take all possible of these, 
but choose those lowest in energy
when solving the proton-only system

same here, 
only for neutrons
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Oliver Gorton

BIGSTICK 
(protons)

BIGSTICK 
(neutrons)

proton many-body
energies + densities

neutron many-body
energies + densities

PANASh
couples through 
p-n interaction

proton+neutron 
energies and densities
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0 100 200 300 400 500 600
N (N

max
=12022)

-80

-79

-78

-77

-76
E

0
 [

M
eV

]

Ni60 BIGSTICK
Ni60 PNism

(Projected HF g.s. energy = -76.33 MeV)

KB3G interaction

M-scheme dim= 1 billion!
PANASh calculations done on a laptop!

Oliver Gorton

= # of proton states

PANASh
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60Ni, KB3G
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We are studying 
convergence and 
are writing a paper
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We are studying 
convergence and 
are writing a paper
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We can also compute EM and weak transitions
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We can also compute EM and weak transitions
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Moving forward
Can we apply to the no-core shell model?
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Summary
The configuration-interaction shell model 
remains useful despite its ups and downs. 

The no-core shell model can 
describe many features naturally,
but some ‘intruder’ states—such as halos, 
configuration inversion, the Hoyle state & analogs—
are a challenge.

While M-scheme, on-the-fly codes are extremely efficient,
alternative modalities—algebraic, GCM, proton-neutron—
may be needed to correctly describe these ‘intruder’ states.
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Extra slides
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Strategies for moving forward

• Many-body bases: algebraic and other cluster bases
(see talks by McCoy, Volya)

• Many-body bases from single-particle: projected 
Hartree-Fock + GCM (see talk by Nowacki)

• Proton-neutron truncated basis

• Energy-truncation of shell-model basis
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“Phenomenological” calculations work 
in a fixed space, usually with a core

inert core

excluded

valence space}
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However even valence space 
calculations can still become 

intractable

inert core

excluded

valence space}
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This is particularly true in calculations with two
major shells, such as the sd-pf space

                     M-scheme dimension

40Mg: 286 billion

40Ar: 927 trillion! sd shell

pf shell
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sd shell

pf shell

Often we truncate by particle-hole excitations

sd shell

pf shell

2 particles, 2 holes
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                     M-scheme dimensions

             full space   0p-0h        2p-2h                4p-4h

40Mg: 286 billion    5 million   1.3 billion         28 billion

40Ar: 927 trillion!    1566  9 million   4.6 billion
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sd shell

pf shell

But is this strategy optimal?

sd shell

pf shell

Not all single-particle energies are the same!
(and single-particle energies are not the whole story)

2p, 2h excitations
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Instead, we truncate based 
upon shell model 
‘configurations’

In particular, truncate on the 
configuration centroid (average)
(Horoi, Brown, and Zelevinsky, PRC 50, R2274(R) 

(1994))
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A configuration (or partition) is:

the set of all many-body states with a fixed occupation
of shell model orbitals, i.e.,

(0d5/2)2(1s1/2)1(0d3/2)1 

(0d5/2)3(1s1/2)1(0d3/2)0

etc.
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A configuration (or partition) is:

the set of all many-body states with a fixed occupation
of shell model orbitals, i.e.,

(0d5/2)2(1s1/2)1(0d3/2)1 

(0d5/2)3(1s1/2)1(0d3/2)0

etc.

The configuration centroid is the 
average energy of  all the states
in a configuration

Duflo and Zuker,
PRC 59, R2347(R) (1999)
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A configuration (or partition) is:

the set of all many-body states with a fixed occupation
of shell model orbitals, i.e.,

(0d5/2)2(1s1/2)1(0d3/2)1 

(0d5/2)3(1s1/2)1(0d3/2)0

etc.

The configuration centroid is the 
average energy of  all the states
in a configuration

The configuration centroids 
depend only upon the 

single-particle energies and 
the monopoles, and can be 
easily computed without 
constructing the entire

Hamiltonian matrix.

Duflo and Zuker,
PRC 59, R2347(R) (1999)
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Example: 40Ar in sd-pf space

You can think 
of this as 

averages over 
blocks 

(configurations) 
of the diagonal 

of the 
Hamiltonian 

(but very fast!)
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One can truncate the model space 
on the configuration centroid 

Horoi, Brown, and Zelevinsky, PRC 50, 
R2274(R) (1994)
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This is a little nontrivial in BIGSTICK. 

BIGSTICK is organized around quantum numbers, 
including a fake integer quantum number, ‘w’ (or weight),
assigned to each orbital.  (For the no-core shell model, this is then
principal quantum number N).

BIGSTICK truncates by restricting to a maximum total W.
This is very fast!  

One can truncate the model space 
on the configuration centroid 

Horoi, Brown, and Zelevinsky, PRC 50, 
R2274(R) (1994)
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Nonetheless I had a master’s student (A. Keller) write a code 
using simulated annealing to optimize the single-particle weights, 
based upon some targeted cutoff  in centroids

But BIGSTICK’s truncation 
is linear in the orbitals, 

while configuration 
centroids are quadratic
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Nonetheless I had a master’s student (A. Keller) write a code 
using simulated annealing to optimize the 
single-particle weights.

34Mg in sd-pf

Full space: 587 billion!
2p,2h : 19.6 million
4p,4p: 2.3 billion

New : 146 million

New weights: 

1p1/2: 4
0f5/2:  4
1p3/2: 3
0f7/2:  3 
0d3/2: 3
1s1/2:  2
0d5/2: 1

targeted cutoff
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Nonetheless I had a master’s student (A. Keller) write a code 
using simulated annealing to optimize the 
single-particle weights.

41Si in sd-pf

Full space: 10.3 trillion!
2p,2h : 3.1 billion!

New : 136 million

New weights: 

1p1/2: 4
0f5/2:  4
1p3/2: 3
0f7/2:  3 
0d3/2: 3
1s1/2:  2
0d5/2: 1
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This is work in progress!

• To reduce spurious center-of-mass motion, can add 
+ l Hcm (Lawson method)—reduces to < 1%.

• Still have yet to study convergence with basis dimension


