Challenges to the shell model

Calvin W. Johnson

"This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-03ER41272 "

FRIB-TA Workshop, May 262023

Configuration-interaction shell model

San Diego State UNIVERSITY
$\underset{\text { expand in some (many-body) basis }}{\text { Matrix formalism: }} \quad \hat{\mathbf{H}}|\Psi\rangle=E|\Psi\rangle$

$$
|\Psi\rangle=\sum_{\alpha} c_{\alpha}|\alpha\rangle \quad H_{\alpha \beta}=\langle\alpha| \hat{\mathbf{H}}|\beta\rangle
$$

Disadvantage:

- not size-extensive, basis grow exponentially

Advantages:

- Excited states easy to generate
- Direct access to wave function allows for detailed analysis

Outline of talk

- The rise and fall and rise of the shell model
- The challenge of intruders
- ${ }^{11} \mathrm{Li} \&{ }^{29} \mathrm{~F}$ as case studies
- Possible paths forward

A brief and incomplete history

1949: Goeppert-Mayer and Axel, Jensen \& Suess show spin-orbit splitting explain magic numbers. Single-particle picture describes many measured magnetic moments.
(Non-interacting shell model)
1956: Edith Halbert and J. B. French perform early configuration-interaction (interacting shell model) calculations.

1965: Cohen-Kurath empirical interaction for valence p-shell 1977: Whitehead introduces Lanczos method 1984: Wildenthal interaction for valence $s d$-shell 1991: FPD6 interaction for valence $p f$ shell

A brief and incomplete history

But....

1970 Barrett and Kirson, 1972 Schucan and Weidenmuller: intruder states can cause perturbative expansions to ultimately diverge.

This in particular applies to particle-hole states.
This makes expanding beyond the valence space problematic, and almost kills the field (except for a stubborn few) for twenty years.

A brief and incomplete history

A brief and incomplete history

1991-1993: Barrett and Vary introduce the no-core shell model:
Without a core, there is no "particle-hole" expansion.

Around this same time high-precision phase shift data from NN scattering became available.

Fitted to this data, the Argonne potential showed one could reproduce nuclear many-body data.

Then chiral EFT gave a systematic way to characterize nuclear forces

The field lurches back to life!

A brief and incomplete history

1991-1993: Barrett and Vary introduce the no-core shell model:
Without a core, there is no "particle-hole" expansion.
Around this same time high-precision phase shift data from NN scattering became available.

Fitted to this data, the Argonne potential showed one could reproduce nuclear many-body data.

Then chiral EFT gave a systematic way to characterize nuclear forces

The field lurches back to life!

FRIB-TA Workshop, May 262023

Modern many-body calculations

No-core shell model: in harmonic oscillator basis, "all" particles active (up to $\mathrm{N}_{\text {max }}$ h.o. excitation quanta), with high-precision interaction (e.g. chiral EFT, HOBET, etc.) fit to few-body data
e.g. p-shell nuclides up to $\mathrm{N}_{\max }=10 \ldots 22$
(cf talks by Anna McCoy and Mark Caprio)

Some highlight achievements:

- Can get spectra of light nuclei "from first principles"

Maris , Vary, Navratil PRC 87, 014327 (2013)
chiral $2+3$ body forces

FRIB-TA Workshop, May 262023

Some highlight achievements:

- Can get spectra of light nuclei "from first principles"

Maris et al PRC 90, 014314 (2014)
${ }^{12} \mathrm{C}$ with chiral $2+3$ body forces

${ }^{20} \mathrm{Ne}$

${ }^{20} \mathrm{Ne}$

SAN Diego State UNIVERSITY

By looking at the grouptheoretical decomposition, we can even show that the valence-space empirical and ab initio multi-shell wave functions have similar structure!

Maris et al PRC 90, 014314 (2014)
${ }^{12} \mathrm{C}$ with chiral $2+3$ body forces

The Hoyle state in ${ }^{12} \mathrm{C}$ is a problem!

FRIB-TA Workshop, May 262023

Haxton and Johnson, PRL 65, 1325 (1990)

There's a similar state in ${ }^{16} \mathrm{O}$

There's a similar state in ${ }^{16} \mathrm{O}$

One can think of

 these as alphacluster states

These cluster states are not easy to reproduce in the NCSM.
They may require as much as $30 h \omega$ excitations in a h.o. basis (T. Neff), yet they appear low in the spectrum

$$
\text { T. Neff, J. Phys. Conf. Ser. } 403012028 \text { (2012) }
$$

Journal of Physics: Conference Series 403 (2012) 012028

Figure 6. Decomposition of the ${ }^{12} \mathrm{C}$ ground state and the Hoyle state into $N \hbar \Omega$ components for oscillator constants of 20 MeV (left) and 12 MeV (right).

Fermionic molecular dynamics calculation with Argonne V18 potential

${ }^{12} \mathrm{C}$ g.s. (fermionic molecular dynamics FMD calculation)

${ }^{12} \mathrm{C}$ Hoyle state main FMD configurations.

See also: S. Shen, D. Lee, et al, Nat. Commun. 14 (2023) 2777 (arXiv:2202.13596) for similar results on the lattice

${ }^{12} \mathrm{C}$ Hoyle state main FMD configurations.

So basically we have the intruder state problem all over again!

One can phenomenologically reproduce spectra for example, by adjusting single particle energies

${ }^{16} \mathrm{O}$ Haxton \& CWJ, PRL 65 (1990) 1325

One can phenomenologically reproduce spectra

 for example, by adjusting single particle energies

One can phenomenologically reproduce spectra or by adjusting the strength of an $\mathrm{SU}(3)$ Casimir

Expt.

NCSpM
FRIB-TA Workshop, May 262023
Expt. NCSpM
Expt. NCSpM

$$
\begin{aligned}
H_{\gamma}= & \sum_{i=1}^{A}\left(\frac{\mathbf{p}_{i}^{2}}{2 m}+\frac{m \Omega^{2} \mathbf{r}_{i}^{2}}{2}\right)+\frac{\chi}{2} \frac{\left(e^{-\gamma Q \cdot Q}-1\right)}{\gamma} \\
& -\kappa \sum_{i=1}^{A} l_{i} \cdot s_{i} .
\end{aligned}
$$

Furthermore, the islands of inversions and halo nuclei
 form a similar challenge to standard shell-model pictures

CASE STUDY: ${ }^{11}$ LI

${ }^{11} \mathrm{Li}$ makes for an excellent case study:

- Example of "island of inversion"
- Halo or extended state
- Small enough to be tackled numerically
- Testbed for techniques

CASE STUDY: ${ }^{11}$ LI

One proton outside a filled shell

+ filled neutron shell

One proton outside a filled shell

+ neutron 2 p-2h

"island of inversion"

CASE STUDY: ${ }^{11}$ LI

${ }^{11} \mathrm{Li}$ makes for an excellent case study
(The following results are preliminary)

3/2- g.s. is a halo state and on an island of inversion

CASE STUDY: ${ }^{11}$ LI

${ }^{11} \mathrm{Li}$ makes for an excellent case study

Calculations with Entem-Machleidt N3LO chiral (no 3-body) at $\mathrm{h} \Omega=20 \mathrm{MeV}$.

Also computed with natural orbitals

CASE STUDY: ${ }^{11}$ LI

FRIB-TA Workshop, May 262023

CASE STUDY: ${ }^{11}$ LI

FRIB-TA Workshop, May 262023

Mark Caprio

CASE STUDY: ${ }^{11}$ LI

FRIB-TA Workshop, May 262023

CASE STUDY: ${ }^{11}$ LI

FRIB-TA Workshop, May 262023

CASE STUDY: ${ }^{11}$ LI

FRIB-TA Workshop, May 262023

Mark Caprio

CASE STUDY: ${ }^{11}$ LI

CASE STUDY: ${ }^{11}$ LI

Grouptheoretical Decomposition

Elliot SU(3)

FRIB-TA Workshop, May 262023

CASE STUDY: ${ }^{11}$ LI

Grouptheoretical Decomposition

Symplectic Sp(3,R)

CASE STUDY: ${ }^{11}$ LI

"E2" response
Probably not expt measurable, but double-hump illuminates deformation

CASE STUDY: ${ }^{29} \mathrm{~F}$

${ }^{29} \mathrm{~F}$ is an analog of ${ }^{11} \mathrm{Li}$

One proton outside a filled shell

+ filled neutron shell

One proton outside a filled shell + neutron $2 \mathrm{p}-2 \mathrm{~h}$

"island of inversion"

CASE STUDY: ${ }^{29} \mathrm{~F}$

${ }^{29} \mathrm{~F}$ is an analog of ${ }^{11} \mathrm{Li}$ (calculations done this week!)

$\mathrm{N}_{\max }=4$, natural orbitals

CASE STUDY: ${ }^{29} \mathrm{~F}$

SAN Diego State UNIVERSITY
${ }^{29} \mathrm{~F}$ is an analog of ${ }^{11} \mathrm{Li}$ (calculations done this week!)

$\mathrm{N}_{\max }=4$, natural orbitals

CASE STUDY: ${ }^{29}$ F

SAN Diego State UNIVERSITY

Grouptheoretical
Decomposition

Symplectic Sp(3,R)
$\mathrm{N}_{\max }=4$, natural orbitals

CASE STUDY: ${ }^{29}$ F

SAN Diego State UNIVERSITY

Grouptheoretical decomposition

SU(4)
$\mathrm{N}_{\max }=4$, natural orbitals

CASE STUDIES: ${ }^{11}$ LI, ${ }^{29}$ F

I suggest ${ }^{11} \mathrm{Li},{ }^{29} \mathrm{~F}$ as case studies for other methods (coupled cluster, IM-SRG, symmetry adapted, lattice, etc.).

CASE STUDIES: ${ }^{11}$ LI, ${ }^{29} \mathrm{~F}$

I suggest ${ }^{11} \mathrm{Li},{ }^{29} \mathrm{~F}$ as case studies for other methods (coupled cluster, IM-SRG, symmetry adapted, lattice, etc.).

We should also look for experimental observables to test our calculations (since the quadrupole moment, in ${ }^{11} \mathrm{Li}$ at least, does not differentiate between states).

So what have we learned?

The no-core shell model reproduces some features easily
but others are very challenging!

These calculations were performed with an M-scheme (fixed-Jz) on-the-fly code.

Such on-the-fly codes (ANTOINE, BIGSTICK, etc) are extremely efficient (CWJ et al, Comp. Phys.Comm. 184, 2761(2013))

But even those codes have their limits

What are possible strategies for extending the reach of the shell model?

Strategies for moving forward

- Many-body bases: algebraic and other cluster bases (see talks by (Caprio?) McCoy, Volya)
- Many-body bases from single-particle: projected Hartree-Fock + GCM (see talk by Nowacki)
- Proton-neutron truncated basis
- Energy-truncation of shell-model basis

Strategies for moving forward

- Many-body bases: algebraic and other cluster bases (see talks by McCoy, Volya)
- Many-body bases from single-particle: projected Hartree-Fock + GCM (see talk by Nowacki)
- Proton-neutron truncated basis
- Energy-truncation of shell-model basis

Symplectic Sp(3,R) Symmetry

Collectivity features

Group theory may be a natural framework for cluster physics

Kravvaris \& Volya, PRL 119, 062501 (2017)

FIG. 1. Spectrum of RGM Hamiltonian with the SRG softened N3LO interaction ($\lambda=1.5 \mathrm{fm}^{-1}$) and $\hbar \Omega=25 \mathrm{MeV}$ for a 2α system. Zero on the energy scale is set by the $\alpha+\alpha$ breakup threshold of the corresponding model. Levels are marked by spin and parity and by an absolute binding energy in units of MeV . The α binding energies for the $\alpha[0]$ and $\operatorname{NCSM}(\alpha[4])$ calculations are -26.08 and -28.56 MeV , respectively. The inset shows the relative wave function of the two α clusters.

Strategies for moving forward

- Many-body bases: algebraic and other cluster bases (see talks by McCoy, Volya)
- Many-body bases from single-particle: projected Hartree-Fock + GCM (see talk by Nowacki)
- Proton-neutron truncated basis
- Energy-truncation of shell-model basis

Strategies for moving forward

- Many-body bases: algebraic and other cluster bases (see talks by McCoy, Volya)
- Many-body bases from single-particle: projected Hartree-Fock + GCM (see talk by Nowacki)
- Proton-neutron truncated basis - Energy-truncat

These alternatives are not without challenges!

J-scheme matrices are smaller but much denser than M-scheme, and "symmetry-adapted" (i.e. SU(3)) matrices are smaller (and denser) still.

```
example: \({ }^{12} \mathrm{C} \mathrm{N}_{\max }=8\)
```

scheme basis dim

M	6×10^{8}
$J(J=4)$	9×10^{7}
$S U(3)$	9×10^{6}

(truncated)
From Dytrych, et al, arXiv:1602.02965

J-scheme matrices are smaller but much denser than M-scheme, and "symmetry-adapted" (i.e. SU(3)) matrices are smaller (and denser) still.

```
example: \({ }^{12} \mathrm{C} \mathrm{N}_{\max }=8\)
```

scheme basis dim \# of nonzero matrix elements

M	6×10^{8}	5×10^{11}
$J(J=4)$	9×10^{7}	3×10^{13}
$S U(3)$	9×10^{6}	2×10^{12}

(truncated)
From Dytrych, et al, arXiv:1602.02965

SAN Diego State
UNIVERSITY

J-scheme matrices are smaller but much denser than M-scheme, and "symmetry-adapted" (i.e. SU(3)) matrices are smaller (and denser) still.
example: ${ }^{12} \mathrm{C} \mathrm{N}_{\max }=8$
scheme basis dim \# of nonzero matrix element least amount of work!

M	6×10^{8}	5×10^{11} 4 Tb of memory! $\mathrm{J}(\mathrm{J}=4)$ $9 \times 10^{\prime}$ $\mathrm{SU}(3)$ 9×10^{6}	2×10^{10}
(truncated)		2×10^{12}	16 Tb of memory!

From Dytrych, et al, arXiv:1602.02965

Choice of wave function basis

One chooses between a few, complicated states or many simple states

Choice of wave function basis

One chooses between a few, complicated states or many simple states

Choice of wave function basis

One chooses between a few, complicated states or many simple states

Choice of wave function basis

One ch Are there ways we can
ed states or ma harness the efficiency of on-the-fly but still get to

M-scheme J-scheme $\operatorname{SU}(3)$ GCM coupled-cluster (not really diagonalization)

Strategies for moving forward

- Many-body bases: algebraic and other cluster bases (see talks by McCoy, Volya)
- Many-body bases from single-particle: projected Hartree-Fock + GCM (see talk by Nowacki)
- Proton-neutron truncated basis
- Energy-truncation of shell-model basis

Alternate approach for medium/heavy nuclei:
Proton-neutron factorization

$$
|\Psi\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$

Can we truncate to just a few components?

Gorton and CWJ, J. Phys. G 50, 045110 (2023).

FRIB-TA Workshop, May 262023

Alternate approach for medium/heavy nuclei:
Proton-neutron factorization

$$
\begin{gathered}
|\Psi\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle \\
\left(a_{1}|010110 \ldots\rangle+a_{2}|110010 \ldots\rangle+a_{3}|001011 \ldots\rangle+\ldots \ldots\right)
\end{gathered}
$$

No longer single "Slater determinants" but linear combinations...

Alternate approach for medium/heavy nuclei:
Proton-neutron factorization

$$
|\Psi\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$

Can we truncate to just a few components?
Priori work by Papenbrock, Juodagalvis, Dean, Phys. Rev. C 69, 024312 (2004), focused on $\mathbf{N}=\mathbf{Z}$
similar to DMRG (density-matrix renormalization group) (but not exactly)

Why we think this could work:

Decompose full wfn into proton, neutron components

$$
|\Psi\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$

$f r a c_{\mu}=\sum_{\nu}\left|c_{\mu \nu}\right|^{2} \quad \begin{aligned} & =\text { fraction of full wave function with } \\ & \text { proton (eigen)state } \mu\end{aligned}$
(one can compute this very efficiently with the Lanczos algorithm, using just the proton part of the full Hamiltonian)
${ }^{52} \mathrm{Fe}$ in $p f$-shell with GX1A interaction
decomposition of g.s.

These energies are the eigenenergies of 6 valence protons in the $p f$ shell
FRIB-TA Workshop, May 262023
$p f$-shell with GX1A interaction
decomposition into proton components

Note exponential
(Boltzmann) fall-off
FRIB-TA Workshop, May 262023

Example application:
shells between 50 and $82\left(0 g_{7 / 2} 2\right.$ s $\left.1 \mathrm{~d} 0 \mathrm{~h}_{11 / 2}\right)$
${ }^{129} \mathrm{Cs}: \mathrm{M}$-scheme dim 50 billion (haven't tried!)

Proton Slater determinant dimension: 14,677 Neutron Slater determinant dimension: 646,430

We have written a code (O. Gorton)
 Proton And Neutron Approximate Shell model: PANASh

We want to find solutions to
$\hat{H}|\Psi\rangle=E|\Psi\rangle$ where $\quad \hat{H}=\hat{H}_{p p}+\hat{H}_{n n}+\hat{H}_{p n}$
We solve $\quad \hat{H}_{p p}\left|\Psi_{p}\right\rangle=E_{p}\left|\Psi_{p}\right\rangle \quad \hat{H}_{n n}\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle$
and choose certain $\left|\Psi_{p}\right\rangle\left|\Psi_{n}\right\rangle$ as basis for diagonalization;

Using BIGSTICK we construct many-proton states of good J

$$
\left|\Psi_{p}, J_{p} M\right\rangle=\sum_{\mu} c_{\mu}\left|p_{\mu}, M\right\rangle
$$

and the same for many-neutron states; these we couple together in a J-scheme code with fixed J for basis:
Oliver Gorton

$$
\left.\left|\Psi_{J}\right\rangle=\sum_{a b} c_{a b}\left\langle\Psi_{p} a, J_{p}\right\rangle \otimes\left(\Psi_{n} b, J_{n}\right\rangle\right) \quad \begin{aligned}
& \text { same here, } \\
& \text { only for neutrons }
\end{aligned} \quad \begin{aligned}
& \text { we don't take all possible of these, } \\
& \text { but choose those lowest in energy } \\
& \text { when solving the proton-only system }
\end{aligned}
$$

FRIB-TA Workshop, May 262023

Oliver Gorton

 energies + densities

PANASh

couples through
p-n interaction
proton+neutron energies and densities

FRIB-TA Workshop, May 262023

FRIB-TA Workshop, May 262023

FRIB-TA Workshop, May 262023

FRIB-TA Workshop, May 262023

We can also compute EM and weak transitions

SAN DIEGO STATE I JNIVERSITY

FRIB-TA Workshop, May 262023

We can also compute EM and weak transitions

FRIB-TA Workshop, May 262023

Moving forward

Can we apply to the no-core shell model?

Summary

The configuration-interaction shell model remains useful despite its ups and downs.

The no-core shell model can describe many features naturally, but some 'intruder' states-such as halos, configuration inversion, the Hoyle state \& analogsare a challenge.

While M-scheme, on-the-fly codes are extremely efficient, alternative modalities-algebraic, GCM, proton-neutronmay be needed to correctly describe these 'intruder' states.

Extra slides

Strategies for moving forward

- Many-body bases: algebraic and other cluster bases (see talks by McCoy, Volya)
- Many-body bases from single-particle: projected Hartree-Fock + GCM (see talk by Nowacki)
- Proton-neutron truncated basis
- Energy-truncation of shell-model basis

"Phenomenological" calculations work An Difgo State "Phenomenological" calculations work UNIVERSITY in a fixed space, usually with a core

However even valence space calculations can still become intractable

This is particularly true in calculations with two major shells, such as the sd-pf space

M-scheme dimension

${ }^{40} \mathrm{Mg}: 286$ billion
${ }^{40} \mathrm{Ar}$: 927 trillion!

Often we truncate by particle-hole excitations

2 particles, 2 holes

M-scheme dimensions

full space $0 p-0 h \quad 2 \mathrm{p}-2 \mathrm{~h} \quad 4 \mathrm{p}-4 \mathrm{~h}$
${ }^{40} \mathrm{Mg}: 286$ billion 5 million 1.3 billion 28 billion
${ }^{40} \mathrm{Ar}: 927$ trillion! $1566 \quad 9$ million $\quad 4.6$ billion

2p, 2h excitations

Not all single-particle energies are the same! (and single-particle energies are not the whole story)

Instead, we truncate based upon shell model 'configurations'

In particular, truncate on the configuration centroid (average) (Horoi, Brown, and Zelevinsky, PRC 50, R2274(R) (1994))

A configuration (or partition) is:
the set of all many-body states with a fixed occupation of shell model orbitals, i.e.,
$\left(0 \mathrm{~d}_{5 / 2}\right)^{2}\left(1 \mathrm{~s}^{1 / 2}\right)^{1}\left(0 \mathrm{~d}_{3 / 2}\right)^{1}$
$\left(0 d_{5 / 2}\right)^{3}\left(1 \mathrm{~s}^{1 / 2}\right)^{1}\left(0 \mathrm{~d}_{3 / 2}\right)^{0}$
etc.

A configuration (or partition) is:
the set of all many-body states with a fixed occupation of shell model orbitals, i.e.,
$\left(0 d_{5 / 2}\right)^{2}\left(1 \mathrm{~s}^{1 / 2}\right)^{1}\left(0 \mathrm{~d}_{3 / 2}\right)^{1}$
$\left(0 d_{5 / 2}\right)^{3}\left(1 \mathrm{~s}^{1 / 2}\right)^{1}\left(0 \mathrm{~d}_{3 / 2}\right)^{0}$
The configuration centroid is the average energy of all the states in a configuration

Duflo and Zuker,
PRC 59, R2347(R) (1999)
etc.

A configuration (or partition) is:
the set of all many-body states with a fixed occupation of shell model orbitals, i.e.,

The configuration centroids depend only upon the single-particle energies and the monopoles, and can be easily computed without constructing the entire Hamiltonian matrix.

The configuration centroid is the average energy of all the states in a configuration

Duflo and Zuker, PRC 59, R2347(R) (1999)

Example: ${ }^{40} \mathrm{Ar}$ in $s d-p f$ space

> You can think of this as averages over blocks (configurations) of the diagonal of the
> Hamiltonian (but very fast!)

FRIB-TA Workshop, May 262023

One can truncate the model space

 on the configuration centroidHoroi, Brown, and Zelevinsky, PRC 50, R2274(R) (1994)

SAN Diego State UNIVERSITY

One can truncate the model space

 on the configuration centroidHoroi, Brown, and Zelevinsky, PRC 50, R2274(R) (1994)

This is a little nontrivial in BIGSTICK.

BIGSTICK is organized around quantum numbers, including a fake integer quantum number, ' w ' (or weight), assigned to each orbital. (For the no-core shell model, this is then principal quantum number N).

BIGSTICK truncates by restricting to a maximum total W. This is very fast!

But BIGSTICK's truncation is linear in the orbitals,

while configuration centroids are quadratic

Nonetheless I had a master's student (A. Keller) write a code using simulated annealing to optimize the single-particle weights, based upon some targeted cutoff in centroids

Nonetheless I had a master's student (A. Keller) write a code using simulated annealing to optimize the single-particle weights.

SAN Diego State UNIVERSITY

targeted cutoff
FRIB-TA Workshop, May 262023
${ }^{34} \mathrm{Mg}$ in $s d-p f$

Full space: 587 billion! 2p,2h: 19.6 million 4p,4p: 2.3 billion

New : 146 million

New weights:
$l_{1 / 2}: 4$
$0 f_{5 / 2}$: 4
$\operatorname{lp}_{3 / 2}: 3$
$0 f_{7 / 2}: 3$
$0 \mathrm{~d}_{3 / 2}$: 3
$1_{s_{1 / 2}}: 2$
$0 \mathrm{~d}_{5 / 2}: 1$

Nonetheless I had a master's student (A. Keller) write a code using simulated annealing to optimize the single-particle weights.

Si41, negative parity

FRIB-TA Workshop, May 262023
${ }^{41} \mathrm{Si}$ in $s d-p f$

Full space: 10.3 trillion! 2p,2h:3.1 billion!

New : 136 million

New weights:
$l_{1 / 2}: 4$
$0 f_{5 / 2}$: 4
$\operatorname{lp}_{3 / 2}: 3$
$0 f_{7 / 2}: 3$
$0 \mathrm{~d}_{3 / 2}$: 3
$1_{s_{1 / 2}}: 2$
$0 \mathrm{~d}_{5 / 2}: 1$

This is work in progress!

- To reduce spurious center-of-mass motion, can add $+\lambda \mathrm{H}_{\mathrm{cm}}$ (Lawson method)-reduces to $<1 \%$.
- Still have yet to study convergence with basis dimension

