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Ab initio nuclear physics
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Lofty Goal: Predict nuclear structure and reactions directly from
quantum chromodynamics (QCD)

Reality: Treat the nucleus as a “Tower of Effective Theories"
New effective degrees of freedom emerge at energy scales

– Effective field theory and lattice QCD provide a link
between the quark scale and the nucleon scale.

– What are the relevant degrees of freedom at the next
scale? Collective degrees of freedom?



Ab initio motivated simple pictures

– Simple pictures are useful for interpreting experimental data or calculated
observables
As we move away from stability, intuition and simple pictures based on N ≈ Z
nuclei may be incomplete

– Ab initio methods can:

– Provide insight into underlying correlations and symmetries

– Test applicability of simple models



Ab initio motivated simple pictures

– Simple pictures are useful for interpreting experimental data or calculated
observables
As we move away from stability, intuition and simple pictures based on N ≈ Z
nuclei may be incomplete

– Ab initio methods can:

– Provide insight into underlying correlations and symmetries

– Test applicability of simple models

Need: measurements of observables to validate ab initio motivated understanding
of simple pictures of nuclear structure.



Outline

– There are many ab initio methods:
Pick your favorite combination of abbreviations

"NCSM","SM","MC","SA", "SRG", "IM", "RGM", "-C", etc.

– Emergence of collective behavior in beryllium isotopes
Enhanced E2 transitions.

– Simple pictures: rotations, dynamical symmetry, two-state mixing
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No-core shell model

Solve many-body Schrodinger equation
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A∑
i,j=1

V(|ri− rj|)Ψ = EΨ

Expanding wavefunctions in a basis

Ψ =

∞∑
k=1

αkϕk

Reduces to Hamiltonian matrix eigenproblem
H11 H12 . . .

H21 H22 . . .
...

...
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Harmonic oscillator basis

– Basis states are configurations, i.e., distributions of
particles over harmonic oscillator shells (nlj substates)

– States are organized by total number of oscillator quanta
above the lowest Pauli allowed number Nex

– States with higher Nex contribute
less to the wavefunction

– Basis must be truncated:
Restrict Nex ≤ Nmax
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Nuclear rotations

Characterized by rotation of intrinsic state |ϕK⟩ by Euler angles ϑ (J = K,K +1, . . .)

|ψJKM⟩ ∝

∫
dϑ

[
DJ

MK(ϑ)|ϕK ;ϑ⟩ + (−)J+KDJ
M−K(ϑ)|ϕK̄ ;ϑ⟩

]
Rotational energy: E(J) = E0+A

[
J(J+1)

]
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Probing underlying symmetries

– Ab initio calculations provides access to underlying wave functions of the collective states

– Using the “Lanczos trick” we can decompose the wave functions according to different symmetries
C. W. Johnson. Phys. Rev. C 91 (2015) 034313.
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Probing underlying symmetries
– Elliott’s SU(3): In limit of large quantum numbers, labels

(λ,µ) are associated with deformation parameters
O. Castanos, J. P. Draayer, Y. Leschber, Z. Phys. A 329 (1988) 3.

β2 ∝ r−4(λ2+λµ+µ2+3λ+3µ+3)

γ = tan−1[
√

3(µ+1)/(2λ+µ+3)]

– Elliott rotation model: Bands arise from projecting out states
with good L and KL from intrinsic state with definite (λµ)

|(λµ)KLLML⟩

– Couple to spin to get good J states

L×S→ J, K = KL +KS

(λµ)

K

SU(3) generators
Q2M Algebraic quadrupole

L1M Orbital angular momentum



Elliott SU(3)
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SU(3) symmetry of a configuration

– Each particle has SU(3) symmetry (N,0), N = 2n+ ℓ

– SU(3) couple particles to get total SU(3)

– Allowed spins dictated by antisymmetry constraints

– Final quantum numbers are Nex(λµ)S.

Lowest energies correspond to most deformed state
⟨Q ·Q⟩/r4 ∝ β2

H ∝ −Q ·Q

= −6CSU(3)(λ,µ)+3L2



Elliott SU(3)→ U(3)

(���)� (���)�

(���)� (���)�

(�
��
)�

(�
��
)�

(���)�

(���)�

(���)�

(���)�

(���)�

(���)�

(�
��
)�

(�
��
)�

(���)�

SU(3) symmetry of a configuration

– Each particle has SU(3) symmetry (N,0), N = 2n+ ℓ

– SU(3) couple particles to get total SU(3)

– Allowed spins dictated by antisymmetry constraints

– Final quantum numbers are Nex(λµ)S.

Lowest energies correspond to most deformed state
⟨Q ·Q⟩/r4 ∝ β2

H ∝ −Q ·Q+E(Nex)

= −6CSU(3)(λ,µ)+3L2+E(Nex)



Elliott rotational bands: 10Be
H ∝ −Q ·Q = −6CSU(3)+3L2+E(Nex)

J. Phys. G: Nucl. Part. Phys. 35 (2008) 123101 Topical Review

Figure 2. A traditional (βγ ) plot, where β (β ! 0) is the radius vector and γ (0 " γ " π/3)
is the azimuthal angle, demonstrates the relationship between the collective model shape variables
(βγ ) and the SU(3) irrep labels (λµ).

a prolate shape, irreps with λ = 0 correspond to an oblate geometry, and irreps with λ = µ

describe a maximally asymmetric shape. A spherical nucleus is described by the (00) irrep.
In short, the SU(3) classification of many-body states allows for a geometrical analysis

of the eigenstates of a nuclear system via relations (54) and (55) and hence gives insight into
phenomena associated with nuclear deformation.

5. Symplectic shell model

The symplectic model [10–12] is a microscopic algebraic model of nuclear collective motion
that includes monopole and quadrupole collective vibrations as well as vorticity degrees of
freedom for a description of rotational dynamics in a continuous range from irrotational to
rigid rotor flows. It can be regarded as both a microscopic realization of the successful
phenomenological Bohr–Mottelson–Frankfurt collective model and a multi-h̄% extension of
the Elliott SU(3) model.

While the NCSM divides the many-nucleon Hilbert space into ‘horizontal’ layers of
Nh̄% subspaces, the symplectic model divides it into ‘vertical’ slices of Sp(3, R) irreducible
representations, which is schematically illustrated in figure 4. The symplectic model thus
allows one to restrict a model space to vertical slices that admit the most important modes of
nuclear collective dynamics.

The symplectic model is based on the 21-dimensional algebra sp(3, R) and has a very
rich group structure (see figure 3). In particular, there are two important subgroup chains
that unveil the physical content of the symplectic model: the shell model subgroup chain
associated with the Elliott SU(3) group and the collective model chain related to the general
collective motion GCM(3) group. The intersection of these chains is the group of rotations
SO(3).
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Elliott rotational bands: 10Be
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Approximate dynamical symmetry

– Ground state band: Nex(λµ)S = 0(2,2)0
β = 0.16, γ = 30◦

– Intruder band: Nex(λµ)S = 2(8,0)0
β = 0.27, γ = 5◦



11Be
Parity inversion
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Nuclear rotations

Characterized by rotation of intrinsic state |ϕK⟩ by Euler angles ϑ (J = K,K +1, . . .)

|ψJKM⟩ ∝

∫
dϑ

[
DJ

MK(ϑ)|ϕK ;ϑ⟩ + (−)J+KDJ
M−K(ϑ)|ϕK̄ ;ϑ⟩

]
Rotational energy: E(J) = E0+A

[
J(J+1)

]
+a(−)J+1/2(J+

1
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12Be Bands

0 1 2 3 4 5 6 7 8

J

0

5

10

15

20

E
x

(M
eV

)

12Be
+

Daejeon16
h̄ω = 15.0

Nmax = 12

0.25

0.50

0.75

1.00

P
(N

ex
)

Nmax=12

2h̄ω0+ 2+ 4+

0 2 4 6

Nex

0.25

0.50

0.75

1.00

P
(N

ex
)

Nmax=12

0h̄ω0+ 2+



Decompose wave functions by Elliott U(3)
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Decompose wave functions by Elliott U(3)
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Rotor Hamiltonian: A. S. Davydov and G. F. Filippov.
Nucl. Phys. 8 (1958) 237.



SU(3) configurations
In SU(3) picture ground state and isomeric 0+2 state have very
different neutron shape. βn(0+2ℏω)/βn(0+0ℏω) ≈ 4.

nents. The K!!02
" band is approximately described by 0"#

configurations, while the K!!01
" , 03

" , 21
" bands are domi-

nated by 2"# configurations with two neutrons in sd-like
orbits. On the other hand, the main components of the K!

!11
# band are 1"# configurations.
The idea of molecular orbits surrounding a 2$ core is

helpful to understand the roles of the valence neutrons in
neutron-rich Be isotopes. The molecular orbits in Be isotopes
were suggested in a study of 9Be with a 2$"n cluster model
%24&. They assumed ' orbits and ! orbits which are made
from linear combinations of the p orbits around the $ cores
(see Fig. 5). This idea was applied to neutron-rich Be iso-
topes by Seya et al. a long time ago %1&. In the 1990s Oertzen
et al. %3,32& revived this kind of research to understand the
rotational bands of neutron-rich Be isotopes, and Itagaki
et al. %8,9& described the structures of the low-lying states of
10Be and 12Be by assuming 2$ core and valence neutrons in
the molecular orbits. The formation of the 2$ and valence
neutron structures in neutron-rich Be isotopes was first guar-
anteed theoretically by the AMD calculation %2,5–7,11&,
where the existence of any clusters or molecular orbits was
not assumed. In these AMD studies, the viewpoint of the
molecular orbit was found to be useful to understand the
cluster development in 10Be and 11Be. Therefore, it is an
interesting problem whether the states of 12Be can be de-
scribed by the molecular orbits.
In the present results for 12Be, we find a new kind of

molecular orbit besides the suggested ! orbit and ' orbit. In
the positive-parity orbits of the valence neutrons in 12Be,
two kinds of molecular orbits appear, both of which are as-
sociated with sd orbits. The first one is the ' orbit %Fig.
5(a)&, while the second one is quite a new molecular orbit,
shown in Fig. 5(c). This orbit is the other positive-parity
orbit made from a linear combination of the p orbits around
the $ cores. As shown in Fig. 5(c), the combined p orbits in
this orbit are perpendicular to those in the ' orbit. We call
this new positive-parity orbit a *! orbit in the present paper,
although it has (+,)!(01) symmetry in the SU3 limit,
which is perpendicular to the so-called *-orbit in the field of
the molecular physics. In the case of 12Be, the negative-
parity orbit of the neutron surrounding 2$ does not neces-
sarily correspond to the pure molecular ! orbit, because the
p3/2-shell closure cannot be described by simple ! orbits.
Therefore, in the following discussions, we concentrate on

the positive-parity orbits of the valence neutrons associated
with the molecular ' orbits and *! orbits.
Figure 6 shows the density distributions of the single-

particle wave functions of the first and second highest neu-
tron orbits. In the low-spin cluster states, the positive-parity
orbits of the valence neutrons can be well associated with the
two types of the molecular orbits ' and *!. In the 01

" state,
two valence neutrons with up and down spins occupy the
'-like orbits, which have two nodes along the longitudinal
axis. In the 03

" state, which is dominated by the other 2"#
configurations, the two neutrons occupy *!-like orbits. It is
very surprising that the developed 6He"6He cluster struc-
ture in the 03

" state is understood by the new molecular *!
orbits. It occurs when two deformed 6He clusters are at-
tached in parallel. In the 02

" state, all of the four valence
neutrons are in the negative-parity orbits. Comparing the en-
ergies of the 03

" state with those of the 01
" and 02

" states, the
*! orbit is the highest among the molecular orbits ' , ! , and
*!.
The molecular ' orbit is one of the reasons for the de-

formed ground state of 12Be with the 2"# configurations,
which is lower than the closed neutron-shell state. Since Be
nuclei prefer prolate deformations because of the 2$-cluster
core, the ' orbit gains kinetic energy in the developed cluster
system. In pioneering studies %9,11&, the importance of the '
orbit in the ground states of 11Be and 12Be were discussed in
relation to a vanishing of the magic number. Thus, the neu-
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FIG. 5. Sketches for the molecular orbits, (a) ' orbits, (b) !
orbits, and (c) *! orbits surrounding 2$ core. These molecular or-
bits are explained by linear combinations of the p-shell orbits
around the $ cores.

P  =0.8+

1+

+1

6+1

0

0

P  =0.9

+3

3

+ +

+P  =0.8+

+P  =0.8 +

+P  =0.7

P  =0.7

P  =0.9

P  =0.9

FIG. 6. Density distributions of the single-particle wave func-
tions of the valence neutrons in the intrinsic wave functions of the
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densities regarding the positive-parity components of the first (sec-
ond) highest neutron orbits. The value P" in each orbit indicates
the squared amplitude of the contained positive-parity component.
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not assumed. In these AMD studies, the viewpoint of the
molecular orbit was found to be useful to understand the
cluster development in 10Be and 11Be. Therefore, it is an
interesting problem whether the states of 12Be can be de-
scribed by the molecular orbits.
In the present results for 12Be, we find a new kind of

molecular orbit besides the suggested ! orbit and ' orbit. In
the positive-parity orbits of the valence neutrons in 12Be,
two kinds of molecular orbits appear, both of which are as-
sociated with sd orbits. The first one is the ' orbit %Fig.
5(a)&, while the second one is quite a new molecular orbit,
shown in Fig. 5(c). This orbit is the other positive-parity
orbit made from a linear combination of the p orbits around
the $ cores. As shown in Fig. 5(c), the combined p orbits in
this orbit are perpendicular to those in the ' orbit. We call
this new positive-parity orbit a *! orbit in the present paper,
although it has (+,)!(01) symmetry in the SU3 limit,
which is perpendicular to the so-called *-orbit in the field of
the molecular physics. In the case of 12Be, the negative-
parity orbit of the neutron surrounding 2$ does not neces-
sarily correspond to the pure molecular ! orbit, because the
p3/2-shell closure cannot be described by simple ! orbits.
Therefore, in the following discussions, we concentrate on

the positive-parity orbits of the valence neutrons associated
with the molecular ' orbits and *! orbits.
Figure 6 shows the density distributions of the single-

particle wave functions of the first and second highest neu-
tron orbits. In the low-spin cluster states, the positive-parity
orbits of the valence neutrons can be well associated with the
two types of the molecular orbits ' and *!. In the 01

" state,
two valence neutrons with up and down spins occupy the
'-like orbits, which have two nodes along the longitudinal
axis. In the 03

" state, which is dominated by the other 2"#
configurations, the two neutrons occupy *!-like orbits. It is
very surprising that the developed 6He"6He cluster struc-
ture in the 03

" state is understood by the new molecular *!
orbits. It occurs when two deformed 6He clusters are at-
tached in parallel. In the 02

" state, all of the four valence
neutrons are in the negative-parity orbits. Comparing the en-
ergies of the 03

" state with those of the 01
" and 02

" states, the
*! orbit is the highest among the molecular orbits ' , ! , and
*!.
The molecular ' orbit is one of the reasons for the de-

formed ground state of 12Be with the 2"# configurations,
which is lower than the closed neutron-shell state. Since Be
nuclei prefer prolate deformations because of the 2$-cluster
core, the ' orbit gains kinetic energy in the developed cluster
system. In pioneering studies %9,11&, the importance of the '
orbit in the ground states of 11Be and 12Be were discussed in
relation to a vanishing of the magic number. Thus, the neu-
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FIG. 5. Sketches for the molecular orbits, (a) ' orbits, (b) !
orbits, and (c) *! orbits surrounding 2$ core. These molecular or-
bits are explained by linear combinations of the p-shell orbits
around the $ cores.
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FIG. 6. Density distributions of the single-particle wave func-
tions of the valence neutrons in the intrinsic wave functions of the
01

" , 03
" , 61

" , and 31
" states. The figures at the left (right) show the

densities regarding the positive-parity components of the first (sec-
ond) highest neutron orbits. The value P" in each orbit indicates
the squared amplitude of the contained positive-parity component.
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Antisymmetrized molecular dynamics (AMD)
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Decompose wave functions by Elliott U(3)
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12Be transitions
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12Be Bands
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In previous NCSM calculations,
bands were insufficiently
converged to cross.



12Be Bands
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Two state mixing

Hmix =

(
E1 V
V E2

)
︸        ︷︷        ︸

mixing Hamiltonian

→

(
Ψ ′1
Ψ ′2

)
︸ ︷︷ ︸
“mixed"

=

(
cosθ sinθ
−sinθ cosθ

)
︸                ︷︷                ︸

mixing matrix

(
Ψ1
Ψ2

)
︸ ︷︷ ︸

“unmixed"

– Mixing angle θ depends on mixing matrix element V and ∆E = E1−E2

– Get “unmixed" energy from
E(J) = E0+A[J(J+1)]
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12Be transitions
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12Be radii
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β2 ∼ ⟨Q ·Q⟩/ ⟨r2⟩
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Summary

– Rotational bands emerge in calculated spectrum 10,11,12Be

– Bands exhibit approximate SU(3) dynamical symmetry
– Intruder bands come increasingly lower in the spectrum with additional neutrons

– Shape coexistence
– Parity inversion in 11Be
– Intruder ground state in 12Be

– Mixing of 0+ states in 12Be can be described in terms of a two-state mixing model.

Would like measured values for radii, E2 and E0 transitions, lifetimes, etc. of nuclei near
shell closures, e.g., oxygen isotopes





12Be negative parity spectrum
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Phys. Rev. C 68 (2003), 014319.
Phys. Lett. B 660 (2008) 32.

No 0− bound state found in 11Be(d,p)-transfer exp.
Phys. Rev. C 88 (2013) 044619.

SU(3):
Nex(λ,µ)S = 1, (4,1)1
Nex(λ,µ)S = 1, (4,1)0

β = 0.18
γSU(3) = 16◦



12Be in-band transitions
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