Shapes, symmetries, and collective behavior in light nuclei

Anna E. McCoy

Facility for Rare Isotope Beams, Michigan State University Washington University in St. Louis

April. 5, 2023

Ab initio nuclear physics

Lofty Goal: Predict nuclear structure and reactions directly from quantum chromodynamics (QCD)

Reality: Treat the nucleus as a "Tower of Effective Theories" New effective degrees of freedom emerge at energy scales

- Effective field theory and lattice QCD provide a link between the quark scale and the nucleon scale.
- What are the relevant degrees of freedom at the next scale? Collective degrees of freedom?

Ab initio motivated simple pictures

Simple pictures are useful for interpreting experimental data or calculated observables

As we move away from stability, intuition and simple pictures based on $N \approx Z$ nuclei may be incomplete

- Ab initio methods can:
 - Provide insight into underlying correlations and symmetries
 - Test applicability of simple models

Ab initio motivated simple pictures

Simple pictures are useful for interpreting experimental data or calculated observables

As we move away from stability, intuition and simple pictures based on $N \approx Z$ nuclei may be incomplete

- Ab initio methods can:
 - Provide insight into underlying correlations and symmetries
 - Test applicability of simple models

Need: measurements of observables to validate ab initio motivated understanding of simple pictures of nuclear structure.

Outline

- There are many *ab initio* methods:

Pick your favorite combination of abbreviations "NCSM", "SM", "MC", "SA", "SRG", "IM", "RGM", "-C", etc.

- Emergence of collective behavior in beryllium isotopes Enhanced E2 transitions.
- Simple pictures: rotations, dynamical symmetry, two-state mixing

Outline

- There are many *ab initio* methods:

Pick your favorite combination of abbreviations "NCSM", "SM", "MC", "SA", "SRG", "IM", "RGM", "-C", etc.

No-core shell model

- Emergence of collective behavior in beryllium isotopes *Enhanced E2 transitions*.
- Simple pictures: rotations, dynamical symmetry, two-state mixing

No-core shell model

Solve many-body Schrodinger equation

$$\sum_{i}^{A} - \frac{\hbar^2}{2m_i} \nabla_i^2 \Psi + \frac{1}{2} \sum_{i,j=1}^{A} V(|r_i - r_j|) \Psi = E \Psi$$

Expanding wavefunctions in a basis

$$\Psi = \sum_{k=1}^{\infty} \alpha_k \phi_k$$

Reduces to Hamiltonian matrix eigenproblem

$$\begin{pmatrix} H_{11} & H_{12} & \dots \\ H_{21} & H_{22} & \dots \\ \vdots & \vdots & \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \end{pmatrix} = E \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \end{pmatrix}$$

- Basis states are configurations, i.e., distributions of particles over harmonic oscillator shells (*nlj substates*)
- States are organized by total number of oscillator quanta above the lowest Pauli allowed number N_{ex}
- States with higher N_{ex} contribute less to the wavefunction
- Basis must be truncated: Restrict $N_{\text{ex}} \le N_{\text{max}}$

N = 2n + l

 $N_{\rm ex} = 2$

Nuclear rotations

Characterized by rotation of intrinsic state $|\phi_K\rangle$ by Euler angles ϑ (J = K, K + 1, ...)

$$|\psi_{JKM}\rangle \propto \int d\vartheta \Big[\mathscr{D}^{J}_{MK}(\vartheta) |\phi_{K};\vartheta\rangle + (-)^{J+K} \mathscr{D}^{J}_{M-K}(\vartheta) |\phi_{\bar{K}};\vartheta\rangle \Big]$$

Rotational energy: $E(J) = E_0 + A[J(J+1)]$

Nuclear rotations

Characterized by rotation of intrinsic state $|\phi_K\rangle$ by Euler angles ϑ (J = K, K + 1, ...)

$$|\psi_{JKM}\rangle \propto \int d\vartheta \Big[\mathscr{D}^{J}_{MK}(\vartheta) |\phi_{K};\vartheta\rangle + (-)^{J+K} \mathscr{D}^{J}_{M-K}(\vartheta) |\phi_{\bar{K}};\vartheta\rangle \Big]$$

Rotational energy: $E(J) = E_0 + A[J(J+1)]$

Probing underlying symmetries

- Ab initio calculations provides access to underlying wave functions of the collective states
- Using the "Lanczos trick" we can decompose the wave functions according to different symmetries *C. W. Johnson. Phys. Rev. C* **91** (2015) 034313.

Probing underlying symmetries

- Elliott's SU(3): In limit of large quantum numbers, labels (λ, μ) are associated with deformation parameters

O. Castanos, J. P. Draayer, Y. Leschber, Z. Phys. A 329 (1988) 3.

 $\beta^2 \propto r^{-4} (\lambda^2 + \lambda\mu + \mu^2 + 3\lambda + 3\mu + 3)$ $\gamma = \tan^{-1} \left[\sqrt{3}(\mu + 1)/(2\lambda + \mu + 3) \right]$

- Elliott rotation model: Bands arise from projecting out states with good *L* and K_L from intrinsic state with definite $(\lambda \mu)$

 $|(\lambda \mu)K_L L M_L\rangle$

- Couple to spin to get good J states

 $L \times S \rightarrow J, \qquad K = K_L + K_S$

SU(3) generators

- Q_{2M} Algebraic quadrupole
- *L*_{1M} Orbital angular momentum

Elliott SU(3)

SU(3) symmetry of a configuration

- Each particle has SU(3) symmetry (N,0), $N = 2n + \ell$
- SU(3) couple particles to get total SU(3)
- Allowed spins dictated by antisymmetry constraints
- Final quantum numbers are $N_{\text{ex}}(\lambda \mu)S$.

Lowest energies correspond to most deformed state $\langle Q \cdot Q \rangle / r^4 \propto \beta^2$

 $H \propto -Q \cdot Q$ $= -6C_{SU(3)}(\lambda, \mu) + 3L^{2}$

Elliott $SU(3) \rightarrow U(3)$

SU(3) symmetry of a configuration

- Each particle has SU(3) symmetry (N,0), $N = 2n + \ell$
- SU(3) couple particles to get total SU(3)
- Allowed spins dictated by antisymmetry constraints
- Final quantum numbers are $N_{\text{ex}}(\lambda \mu)S$.

Lowest energies correspond to most deformed state $\langle Q \cdot Q \rangle / r^4 \propto \beta^2$

$$H \propto -Q \cdot Q + E(N_{\text{ex}})$$
$$= -6C_{\text{SU}(3)}(\lambda, \mu) + 3\mathbf{L}^2 + E(N_{\text{ex}})$$

Elliott rotational bands: ¹⁰Be

Elliott rotational bands: ¹⁰Be

Nuclear rotations

Characterized by rotation of intrinsic state $|\phi_K\rangle$ by Euler angles ϑ (J = K, K + 1, ...)

$$|\psi_{JKM}\rangle \propto \int d\vartheta \Big[\mathscr{D}^{J}_{MK}(\vartheta) |\phi_{K};\vartheta\rangle + (-)^{J+K} \mathscr{D}^{J}_{M-K}(\vartheta) |\phi_{\bar{K}};\vartheta\rangle \Big]$$

Rotational energy: $E(J) = E_0 + A[J(J+1)] + a(-)^{J+1/2}(J+\frac{1}{2})$

Coriolis (K=1/2)

Decompose wave functions by Elliott U(3)

Decompose wave functions by Elliott U(3)

 $0(2,0)0 \rightarrow \beta = 0.11$ $2(6,2)0 \rightarrow \beta = 0.25$

Rotor Hamiltonian: A. S. Davydov and G. F. Filippov. Nucl. Phys. 8 (1958) 237.

SU(3) configurations

In SU(3) picture ground state and isomeric 0_2^+ state have very different neutron shape. $\beta_n(0_{2\hbar\omega}^+)/\beta_n(0_{0\hbar\omega}^+) \approx 4$.

$$+ \overset{\alpha}{\circ} - \overset{\alpha}{\circ} +$$

 σ -orbit

(a)

(b) π -orbit

Antisymmetrized molecular dynamics (AMD)

$$0(0^{2}) = {}^{d}S(^{d}H^{d}V) \underbrace{(J^{d}H^{d}V)}_{N_{ex}(\lambda\mu)S=0(2,0)0} \underbrace{(J^{d}H^{d}V)}_{N_{ex}(\lambda\mu)S=2(6,2)0} \underbrace{(J^{d}H^{d}V)}_{N_{ex}$$

$$\begin{split} Q_2 &\sim C^{(1,1)} + A^{+2(2,0)} + B^{-2(0,2)} \\ r^2 &\sim H^{(0,0)} - \sqrt{\frac{3}{2}} A^{+2(2,0)} - \sqrt{\frac{3}{2}} B^{-2(0,2)} \end{split}$$

Decompose wave functions by Elliott U(3)

¹²Be transitions

¹²Be Bands

In previous NCSM calculations, bands were insufficiently converged to cross.

Two state mixing

- Mixing angle θ depends on mixing matrix element V and $\Delta E = E_1 - E_2$

¹²Be transitions

¹²Be radii

 $\beta^2 \sim \langle Q \cdot Q \rangle / \langle r^2 \rangle^2$

Summary

- Rotational bands emerge in calculated spectrum ^{10,11,12}Be
- Bands exhibit approximate SU(3) dynamical symmetry
- Intruder bands come increasingly lower in the spectrum with additional neutrons
 - Shape coexistence
 - Parity inversion in ¹¹Be
 - Intruder ground state in ¹²Be
- Mixing of 0⁺ states in ¹²Be can be described in terms of a two-state mixing model.

Would like measured values for radii, E2 and E0 transitions, lifetimes, etc. of nuclei near shell closures, e.g., oxygen isotopes

¹²Be negative parity spectrum

0^- predicted in:

Phys. Rev. C **68** (2003), 014319. *Phys. Lett. B* **660** (2008) 32.

No 0^- bound state found in ¹¹Be(d, p)-transfer exp. *Phys. Rev. C* **88** (2013) 044619.

$$\begin{split} & \frac{\mathrm{SU}(3):}{N_{\mathrm{ex}}(\lambda,\mu)S} = 1, (4,1)1\\ & N_{\mathrm{ex}}(\lambda,\mu)S = 1, (4,1)0\\ & \beta = 0.18\\ & \gamma_{\mathrm{SU}(3)} = 16^{\circ} \end{split}$$

¹²Be in-band transitions

