Shapes, symmetries, and collective behavior in light nuclei

Anna E. McCoy

Facility for Rare Isotope Beams, Michigan State University
Washington University in St. Louis

Ab initio nuclear physics

Lofty Goal: Predict nuclear structure and reactions directly from quantum chromodynamics (QCD)

Reality: Treat the nucleus as a "Tower of Effective Theories"
New effective degrees of freedom emerge at energy scales

- Effective field theory and lattice QCD provide a link between the quark scale and the nucleon scale.
- What are the relevant degrees of freedom at the next scale? Collective degrees of freedom?

Nucleons and Pions

Quarks and Gluons

$A b$ initio motivated simple pictures

- Simple pictures are useful for interpreting experimental data or calculated observables
As we move away from stability, intuition and simple pictures based on $N \approx Z$ nuclei may be incomplete
- Ab initio methods can:
- Provide insight into underlying correlations and symmetries
- Test applicability of simple models

$A b$ initio motivated simple pictures

- Simple pictures are useful for interpreting experimental data or calculated observables
As we move away from stability, intuition and simple pictures based on $N \approx Z$ nuclei may be incomplete
- Ab initio methods can:
- Provide insight into underlying correlations and symmetries
- Test applicability of simple models

Need: measurements of observables to validate ab initio motivated understanding of simple pictures of nuclear structure.

Outline

- There are many ab initio methods:

Pick your favorite combination of abbreviations
"NCSM", "SM", "MC", "SA", "SRG", "IM", "RGM", "-C", etc.

- Emergence of collective behavior in beryllium isotopes

Enhanced E2 transitions.

- Simple pictures: rotations, dynamical symmetry, two-state mixing

Outline

- There are many ab initio methods:

Pick your favorite combination of abbreviations
"NCSM", "SM", "MC", "SA", "SRG", "IM", "RGM", "-C", etc.
No-core shell model

- Emergence of collective behavior in beryllium isotopes

Enhanced E2 transitions.

- Simple pictures: rotations, dynamical symmetry, two-state mixing

No-core shell model

Solve many-body Schrodinger equation

$$
\sum_{i}^{A}-\frac{\hbar^{2}}{2 m_{i}} \nabla_{i}^{2} \Psi+\frac{1}{2} \sum_{i, j=1}^{A} V\left(\left|r_{i}-r_{j}\right|\right) \Psi=E \Psi
$$

Expanding wavefunctions in a basis

$$
\Psi=\sum_{k=1}^{\infty} \alpha_{k} \phi_{k}
$$

Reduces to Hamiltonian matrix eigenproblem

$$
\left(\begin{array}{ccc}
H_{11} & H_{12} & \cdots \\
H_{21} & H_{22} & \cdots \\
\vdots & \vdots &
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots
\end{array}\right)=E\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots
\end{array}\right)
$$

Harmonic oscillator basis

- Basis states are configurations, i.e., distributions of particles over harmonic oscillator shells (nlj substates)
- States are organized by total number of oscillator quanta above the lowest Pauli allowed number $N_{\text {ex }}$

- States with higher $N_{\text {ex }}$ contribute less to the wavefunction
- Basis must be truncated: Restrict $N_{\text {ex }} \leq N_{\text {max }}$

$$
N_{\mathrm{ex}}=2
$$

Nuclear rotations

Characterized by rotation of intrinsic state $\left|\phi_{K}\right\rangle$ by Euler angles $\vartheta \quad(J=K, K+1, \ldots)$

$$
\left|\psi_{J K M}\right\rangle \propto \int d \vartheta\left[\mathscr{D}_{M K}^{J}(\vartheta)\left|\phi_{K} ; \vartheta\right\rangle+(-)^{J+K} \mathscr{D}_{M-K}^{J}(\vartheta)\left|\phi_{\bar{K}} ; \vartheta\right\rangle\right]
$$

Rotational energy: $E(J)=E_{0}+A[J(J+1)]$

Nuclear rotations

Characterized by rotation of intrinsic state $\left|\phi_{K}\right\rangle$ by Euler angles $\vartheta \quad(J=K, K+1, \ldots)$

$$
\left|\psi_{J K M}\right\rangle \propto \int d \vartheta\left[\mathscr{D}_{M K}^{J}(\vartheta)\left|\phi_{K} ; \vartheta\right\rangle+(-)^{J+K} \mathscr{D}_{M-K}^{J}(\vartheta)\left|\phi_{\bar{K}} ; \vartheta\right\rangle\right]
$$

Rotational energy: $E(J)=E_{0}+A[J(J+1)]$

Probing underlying symmetries

- Ab initio calculations provides access to underlying wave functions of the collective states
- Using the "Lanczos trick" we can decompose the wave functions according to different symmetries C. W. Johnson. Phys. Rev. C 91 (2015) 034313.

Probing underlying symmetries

- Elliott's $\operatorname{SU}(3)$: In limit of large quantum numbers, labels (λ, μ) are associated with deformation parameters
O. Castanos, J. P. Draayer, Y. Leschber, Z. Phys. A 329 (1988) 3.

$$
\begin{aligned}
& \beta^{2} \propto r^{-4}\left(\lambda^{2}+\lambda \mu+\mu^{2}+3 \lambda+3 \mu+3\right) \\
& \gamma=\tan ^{-1}[\sqrt{3}(\mu+1) /(2 \lambda+\mu+3)]
\end{aligned}
$$

- Elliott rotation model: Bands arise from projecting out states with good L and K_{L} from intrinsic state with definite $(\lambda \mu)$

$$
\left|(\lambda \mu) K_{L} L M_{L}\right\rangle
$$

- Couple to spin to get good J states

$$
L \times S \rightarrow J, \quad K=K_{L}+K_{S}
$$

Elliott SU(3)

SU(3) symmetry of a configuration

- Each particle has $\mathrm{SU}(3)$ symmetry $(N, 0), N=2 n+\ell$
- $\mathrm{SU}(3)$ couple particles to get total $\mathrm{SU}(3)$
- Allowed spins dictated by antisymmetry constraints
- Final quantum numbers are $N_{\mathrm{ex}}(\lambda \mu) S$.

Lowest energies correspond to most deformed state

$$
\begin{aligned}
&\langle Q \cdot Q\rangle / r^{4} \propto \beta^{2} \\
& H \propto-Q \cdot Q \\
& \quad=-6 C_{\mathbf{S U}(3)}(\lambda, \mu)+3 \mathbf{L}^{2}
\end{aligned}
$$

Elliott $\mathrm{SU}(3) \rightarrow \mathrm{U}(3)$

SU(3) symmetry of a configuration

- Each particle has $\mathrm{SU}(3)$ symmetry $(N, 0), N=2 n+\ell$
- $\mathrm{SU}(3)$ couple particles to get total $\mathrm{SU}(3)$
- Allowed spins dictated by antisymmetry constraints
- Final quantum numbers are $N_{\text {ex }}(\lambda \mu) S$.

Lowest energies correspond to most deformed state $\langle Q \cdot Q\rangle / r^{4} \propto \beta^{2}$

$$
\begin{aligned}
H & \propto-Q \cdot Q+E\left(N_{\mathrm{ex}}\right) \\
& =-6 C_{\mathrm{SU}(3)}(\lambda, \mu)+3 \mathbf{L}^{2}+E\left(N_{\mathrm{ex}}\right)
\end{aligned}
$$

Elliott rotational bands: ${ }^{10} \mathrm{Be}$

$H \propto-Q \cdot Q=-6 C_{\mathrm{SU}(3)}+3 \mathbf{L}^{2}+E\left(N_{\mathrm{ex}}\right)$

$N_{\mathrm{ex}}(\lambda, \mu)$	S	\Rightarrow	$\left\langle C_{\mathrm{SU}(3)}\right\rangle$
$0(0,0)$	$0,1,2$	\Rightarrow	0
$0(1,1)$	$0,1,2$	\Rightarrow	6
$0(0,3)$	1	\Rightarrow	12
$0(3,0)$	1	\Rightarrow	12
$0(2,2)$	0	\Rightarrow	16
\cdots			
$2(8,0)$	0	\Rightarrow	58.67

Elliott rotational bands: ${ }^{10} \mathrm{Be}$

- Ground state band: $N_{\mathrm{ex}}(\lambda \mu) S=0(2,2) 0$

$$
\beta=0.16, \gamma=30^{\circ}
$$

- Intruder band: $N_{\text {ex }}(\lambda \mu) S=2(8,0) 0$ $\beta=0.27, \gamma=5^{\circ}$

${ }^{11} \mathrm{Be}$

Parity inversion

$$
0(2,1) \frac{1}{2} \rightarrow \beta=0.15,
$$

$$
1(4,2) \frac{1}{2} \rightarrow \beta=0.22
$$

$$
2(7,1) \frac{1}{2} \rightarrow \beta=0.28
$$

Nuclear rotations

Characterized by rotation of intrinsic state $\left|\phi_{K}\right\rangle$ by Euler angles $\vartheta \quad(J=K, K+1, \ldots)$

$$
\left|\psi_{J K M}\right\rangle \propto \int d \vartheta\left[\mathscr{D}_{M K}^{J}(\vartheta)\left|\phi_{K} ; \vartheta\right\rangle+(-)^{J+K} \mathscr{D}_{M-K}^{J}(\vartheta)\left|\phi_{\bar{K}} ; \vartheta\right\rangle\right]
$$

Rotational energy: $E(J)=E_{0}+A[J(J+1)]+\underbrace{a(-)^{J+1 / 2}\left(J+\frac{1}{2}\right)}_{\operatorname{Coriolis}(K=1 / 2)}$

${ }^{11} \mathrm{Be}$

Parity inversion

$$
0(2,1) \frac{1}{2} \rightarrow \beta=0.15,
$$

$$
1(4,2) \frac{1}{2} \rightarrow \beta=0.22
$$

$$
2(7,1) \frac{1}{2} \rightarrow \beta=0.28
$$

${ }^{12}$ Be Bands

Decompose wave functions by Elliott U(3)

Decompose wave functions by Elliott U(3)

Rotor Hamiltonian: A. S. Davydov and G. F. Filippov. Nucl. Phys. 8 (1958) 237.

$\mathrm{SU}(3)$ configurations

In $\mathrm{SU}(3)$ picture ground state and isomeric 0_{2}^{+}state have very different neutron shape. $\beta_{n}\left(0_{2 \hbar \omega}^{+}\right) / \beta_{n}\left(0_{0 \hbar \omega}^{+}\right) \approx 4$.

$$
\begin{aligned}
& Q_{2} \sim C^{(1,1)}+A^{+2(2,0)}+B^{-2(0,2)} \\
& r^{2} \sim H^{(0,0)}-\sqrt{\frac{3}{2}} A^{+2(2,0)}-\sqrt{\frac{3}{2}} B^{-2(0,2)}
\end{aligned}
$$

(a) σ-orbit

(b) π-orbit

Antisymmetrized molecular dynamics (AMD)

Decompose wave functions by Elliott U(3)

${ }^{12}$ Be transitions

${ }^{12}$ Be Bands

In previous NCSM calculations, bands were insufficiently converged to cross.

${ }^{12} \mathrm{Be}$ Bands

${ }^{12}$ Be Bands

${ }^{12}$ Be Bands

Two state mixing

$$
H_{\text {mix }}=\underbrace{\left(\begin{array}{cc}
E_{1} & V \\
V & E_{2}
\end{array}\right)}_{\text {mixing Hamiltonian }} \rightarrow \underbrace{\binom{\Psi_{1}^{\prime}}{\Psi_{2}^{\prime}}}_{\text {"mixed" }}=\underbrace{\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)}_{\text {mixing matrix }} \underbrace{\binom{\Psi_{1}}{\Psi_{2}}}_{\text {"unmixed" }}
$$

- Mixing angle θ depends on mixing matrix element V and $\Delta E=E_{1}-E_{2}$
- Get "unmixed" energy from $E(J)=E_{0}+A[J(J+1)]$

${ }^{12}$ Be transitions

${ }^{12}$ Be radii

$$
\beta^{2} \sim\langle Q \cdot Q\rangle /\left\langle r^{2}\right\rangle^{2}
$$

Summary

- Rotational bands emerge in calculated spectrum ${ }^{10,11,12} \mathrm{Be}$
- Bands exhibit approximate $\operatorname{SU}(3)$ dynamical symmetry
- Intruder bands come increasingly lower in the spectrum with additional neutrons
- Shape coexistence
- Parity inversion in ${ }^{11} \mathrm{Be}$
- Intruder ground state in ${ }^{12} \mathrm{Be}$
- Mixing of 0^{+}states in ${ }^{12} \mathrm{Be}$ can be described in terms of a two-state mixing model.

Would like measured values for radii, E2 and E0 transitions, lifetimes, etc. of nuclei near shell closures, e.g., oxygen isotopes

${ }^{12} \mathrm{Be}$ negative parity spectrum

0^{-}predicted in:

$$
\begin{aligned}
& \text { Phys. Rev. C } \mathbf{6 8} \text { (2003), } 014319 . \\
& \text { Phys. Lett. B } \mathbf{6 6 0} \text { (2008) } 32 .
\end{aligned}
$$

No 0^{-}bound state found in ${ }^{11} \mathrm{Be}(d, p)$-transfer exp. Phys. Rev. C 88 (2013) 044619.

$$
\begin{aligned}
& \frac{\mathrm{SU}(3):}{\overline{N_{\mathrm{ex}}(\lambda, \mu) S} S=1,(4,1) 1} \\
& N_{\mathrm{ex}}(\lambda, \mu) S=1,(4,1) 0 \\
& \beta=0.18 \\
& \gamma_{\mathrm{SU}(3)}=16^{\circ}
\end{aligned}
$$

${ }^{12} \mathrm{Be}$ in-band transitions

