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Nucleosynthesis beyond iron

Two main processes contribute to the nucleosynthesis beyond Iron: s-

process, r-process and p-process (γ-process)
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Additional process(es) required to produce neutron-deficient p-nuclei
• γ-process: photodissociation material enriched by s-process
• νp-process: (p,γ) and (n,p) reactions catalysed by ҧ𝜈𝑒 + 𝑝 → 𝑛 + 𝑒+

(site: binary neutron star mergers?)



R process needs 
Astrophysical environment should 

provide enough neutrons per seed 

for the r process to operate

𝐴final = 𝐴initial + 𝑛seed

nseed depends mainly on 

neutron richness ejecta

requires properties of exotic 

neutron-rich nuclei:

• Beta-decay rates

• Neutron capture rates 

• Fission rates and yields
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Benchmark against observations:

• Indirect: Solar and stellar abundances (contribution many events, chemical evol.)

• Direct: Kilonova electromagnetic emission (single event, sensitive Atomic and 

Nuclear Physics)
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Pipeline for r-process in mergers
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Simulations

Bauswein et al, ApJ 773, 78 (2013)

Nucleosynthesis
Light curve and

spectra modelling
Watson et al, Nature 574, 497 (2019)

• Properties ejecta: proton-to-

nucleon ratio (𝑌𝑒)

• Role of equation of state

• Role of neutrinos 

• Physics of neutron-rich 

and heavy nuclei
• Radioactive energy 

deposition

• Thermalization decay 

products (Barnes+ 2016, 

Kasen+ 2019) 

• Spectra formation:  

atomic data depends on 

ejecta evolution (LTE vs 

NLTE) 

• Which r-process elements are produced in mergers?

• Are mergers the (main) r-process site?
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Nucleosynthesis dependence on 𝒀𝒆
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Nucleosynthesis mainly sensitive to proton-to-nucleon ratio, 𝑌𝑒 = 𝑛𝑝/(𝑛𝑛 + 𝑛𝑝)

𝜈𝑒 + 𝑛 ⇄ 𝑝 + 𝑒− vs   ҧ𝜈𝑒 + 𝑝 ⇄ 𝑛 + 𝑒+

𝑌𝑒 ≳ 0.25 𝑌𝑒 ≈ 0.15−0.25 𝑌𝑒 ≲ 0.15

Lanthanides Actinides
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Phases during the operation of the

r-process
▪ Weak freeze-out: proton-to-nucleon ratio determined by 

(anti)neutrino absorption and their inverses

▪ Seed production: Charged particle reactions operating 
for 𝑇 ≳ 2 𝐺𝐾 produce the seed nuclei and neutrons

▪ Neutron-capture phase: neutrons are captured on the 
available seed nuclei on a typical times of ~ 1 𝑠. Different 
equilibria are achieved:
▪ (𝑛, 𝛾) ⇄ (𝛾, 𝑛) equilibrium defines the r-process path that is 

mainly sensitive to the nuclear masses

▪ Beta-flow equilibrium: abundance given element is proportional 
to the beta-decay half-lives. R-process peaks associated to 
nuclei with longest half-lives.

▪ Freeze-out and decay to stability: fully dynamical 
phase in which competition between neutron-captures, 
beta-decay (and fission) determines the final abundance 
pattern. Most sensitive phase to the nuclear input  
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R-process operation
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Heavy elements produced by the r-process. Radioactive decay liberates energy  
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Neutron star mergers:

Different ejection mechanisms
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Gravitational wave emission
S. Rosswog, et al, Class. Quantum Gravity 34, 104001 (2017).

S. Rosswog and O. Korobkin, Annalen Der Physik 2022, 2200306 (2022).

Two sources of ejecta:

• Dynamical during the early phases of 

the merger (𝑀 ≲ 0.01 𝑀⊙)

• Accretion disc on longer timescales

(𝑀 ≲ 0.05 𝑀⊙)

• Liftetime neutron-star determines

impact neutrinos



Long term merger simulations 
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First long-term simulations with neutron 

star lifetimes 0.1-1 s and describe all 

components of the ejecta: dynamical, 

NS-remnant ejecta, and final viscous

ejecta from BH torus. 

Just et al, arXiv:2302.10928

HD-222925



The 𝝂𝒓-process
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• A new nucleosynthesis process that may operate in binary neutron star 

mergers under strong neutrino fluxes when nuclei are present: 

charged-current neutrino-nucleus reactions faster than 𝛽− decays.

• Novel mechanism for production of p-nuclei from neutron-rich nuclei. 

Zewei Xiong 

GSI



Role of neutrinos in r-process

▪ Large (anti)neutrino fluxes 

drive composition to 𝑌𝑒 ∼ 0.5
during alpha-particle 

formation (Meyer et al, 1995)

▪ large neutrino fluxes during 

the phase of neutron 

captures erode r-process 

peaks related to long beta-

decays (Langanke, GMP, 

2003)

▪ 𝜈𝑒 absorption cross sections 

∼ 𝑁 − 𝑍

▪ What will be the resulting 

nucleosynthesis?
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Possible source of light p-nuclei and 
92Nb
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γ-process fails to produce light 

p-nuclei 92,94Mo and 96,98Ru in 

solar proportions

Supernova neutrino winds:

• Ejecta with 𝑌𝑒 ∼ 0.48 produce 
92Mo

• 𝜈𝑝-process (𝑌𝑒 ≳ 0.55) 

produces 94Mo, 96,98Ru.

Long-lived 92Nb present in early 

solar system. Cannot be 

produced by the 𝜈𝑝-process 

Can we produce all those nuclei 

in the same environment 

including heavier p-nuclei?



Phases during the operation of the

νr-process
▪ Seed production: Strong neutrino fluxes drive material 

to 𝑌𝑒 ∼ 0.5

▪ Neutron-capture phase: neutrons are used relatively 

fast by two competing mechanisms:

▪ 𝑛 𝜈𝑒 , 𝑒
− 𝑝 converts neutrons into protons that are captures in 

medium mass nuclei

▪ 𝐴 𝜈𝑒, 𝑒
−𝑋 𝑋 = 𝑛, 𝑝, 𝛼 speeds up the decay of nuclei and the 

build up of heavy nuclei

▪ Fast “decay” to stability and beyond:

𝐴 𝜈𝑒 , 𝑒
−𝑋 reactions drive material to beta-stability and 

beyond

▪ Neutrons, protons and alphas produced by both charged-current 

and neutral current spallation reactions. 

▪ Protons and alphas captured mainly in light nuclei

▪ Equilibrium between 𝐴 𝜈𝑒 , 𝑒
−𝑋 and 𝐴 𝑛, 𝛾 determines final 

abundance
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Nucleosynthesis (no neutrino-nucleus)
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r-process abundances

p-process 

abundances

(not scale)



Nucleosynthesis (with neutrino-nucleus)
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𝜈−𝐴 cross sections from 

Sieverding, et al, ApJ 865, 143 (2018).

Final abundance quilibrium between 𝜈𝑒 , 𝑒
− and (𝑛, 𝛾)

p-process 

abundances

(not scale)

r-process abundances



Dependence on neutrino fluence
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Increasing neutrino fluence allows to 

produce heavier p-nuclei
Dependence 𝑌𝑒 and neutrino fluence  

Current neutrino-hydrodynamical models far from the necessary conditions  



Conditions current merger models
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Dynamical,  neutron-star torus,   black-hole torus 

• Material reaches the necessary fluence conditions but it is too hot form nuclei

• A non-thermal ejection mechanism is necessary (magnetic fields?)



Coproduction of all p-nuclei
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• All p-nuclei can be consistently produced

• Assuming the same astrophysical site produces both r-process and 

p-nuclei around 1% of the ejecta should reach 𝜈𝑟-process conditions 



Summary

▪ Multi-messenger observations (Gravitational and 

Electromagnetic waves) from binary neutron star 

mergers provide unique opportunities to study the 

production of heavy elements:

▪ Neutron star mergers identified as one astrophysical site where 

the r-process operates

▪ Kilonova observations provide direct evidence of the “in situ 

operation of the r-process”

▪ Strong synergies with FRIB and FAIR experiments 

▪ 𝜈𝑟-process: new mechanism production p-nuclei:

▪ Gamow-Teller and (spin-)dipole resonances near stability 

determine neutrino cross sections.

▪ Important role of 𝑛, 𝛾 cross sections near stability. 
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