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R-Process Abundances



Nuclear Landscape

To convincingly locate the
site(s) of the r process, we
need to know reaction
rates, particularly β-decay
rates, in neutron-rich
nuclei.

To fully understand
supernova evolution, we
need to know
electron-capture rates for
lots of medium-mass
nuclei.
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Starting Point: Mean-Field-Like Calculation (HFB)
Gives you ground state density, etc. This is where Skyrme
functionals have made their living.
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Zr-102: normal density and pairing density  

HFB, 2-D lattice, SLy4 + volume pairing 
Ref: Artur Blazkiewicz, Vanderbilt, Ph.D. thesis (2005) 
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QRPA

Self-consistent QRPA is time-dependent HFB with small harmonic
perturbation. Perturbing operator is β-decay transition operator.
Decay matrix elements obtained from response of nucleus to
perturbation.



Initial Skyrme Application: Spherical QRPA
Even Isotopes Only
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Closed shell nuclei are spherical.



Later: Fast Skyrme QRPA in Deformed Nuclei
Finite-Amplitude Method (FAM) — Nakatsukasa et al.

Strength functions
computed directly from
linear response, in orders
of magnitude less time
than with matrix QRPA.

Beta-decay rates obtained
by integrating strength
with phase-space
weighting function in
contour around excited
states below threshold.
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Later: Fast Skyrme QRPA in Deformed Nuclei
Finite-Amplitude Method (FAM) — Nakatsukasa et al.

Strength functions
computed directly from
linear response, in orders
of magnitude less time
than with matrix QRPA.

Beta-decay rates obtained
by integrating strength
with phase-space
weighting function in
contour around excited
states below threshold.
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Global Skyrme Fit for Even Nuclei
Mika Mustonen

Fit the charge-changing time-odd functional

H c.c.
odd =Cs1 s

2
11 + C

∆s
1 s11 · +2s11 + CT1 s11 · T11 + Cj1 j

2
11

+ C+j1 s11 · + × j11 + CF1 s11 · F11 + C+s1 (+ · s11)2 + V0 × pn pair.

Included 7 GT resonance energies, 2 spin-dipole resonance
energies, 7 β-decay rates in selected spherical and well-deformed
nuclei from light to heavy.



Results
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Results with All Nuclei
Evan Ney

Figured out how to adapt
FAM to treat odd-A and
odd-odd nuclei.
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What’s at Stake Here?
Significance of Factor-of-Two Uncertainty

Real uncertainty is larger, though.



What’s at Stake Here?
Significance of Factor-of-Two Uncertainty

Real uncertainty is larger, though.



Electron Capture
Evan Ney R. TITUS et al. PHYSICAL REVIEW C 100, 045805 (2019)

Experiment
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FIG. 9. A comparison of the experimentally determined
electron-capture rates on 86Kr, at a temperatures of 10 GK over
the range of stellar densities relevant during deleptonization in
the collapse phase of core-collapse supernovae, as derived from
experimental data. The results are compared with rates derived from
the shell-model and QRPA calculations detailed in the text, as well
as the single-state approximation from Eq. (1).

Gamow-Teller transitions to states at less negative Q dominate
the electron-capture rate. As the density increases, the phase-
space factor drops off more slowly with decreasing Q, and
Gamow-Teller transitions to states at more negative Q start
to contribute to the electron-capture rate, as becomes clear
from the bottom panel of Fig. 8. Even at densities in excess of
1011 g/cm3, the contribution from the transition to the lowest
state is still the strongest single contribution to the rate. This is
because the threshold electron-capture Q value for the case of
86Kr is rather negative (−7.607 MeV), and the first Gamow-
Teller transition only appears at Q ≈ −10 MeV. The situation
for 86Kr described in Fig. 8 is exemplary for the neutron-
rich nuclei in the N = 50 region. Due to the relatively large,
negative Q values for electron-capture on these nuclei, the
details of the Gamow-Teller strength distributions, including
the location of the lowest-lying 1+ state, are important for
estimating accurate electron-capture rates, even at relatively
high densities.

The results of the electron-capture rate calculations for
this work are shown in Fig. 9, at a temperature of 10 GK,
and for densities of relevance for the collapse phase of
core-collapse supernovae. The black solid line represents the
electron-capture rates that are calculated from the Gamow-
Teller strengths extracted from the γ -ray analysis in Sec. III C,
as indicated by the green data points in Fig. 5. The uncertainty
band (in gray) extends down to zero, as the extracted Gamow-
Teller strength is also consistent with zero. The upper error in
the estimated electron-capture rate from the data is calculated
by using the upper errors of the extracted Gamow-Teller
strengths from the coincidence data in Fig. 5. It is important
to note that, because it was only possible to extract Gamow-
Teller strength up to Ex = 5 MeV, transitions to states at

higher excitation energies are not included in the electron-
capture rate calculations derived from the data. However, as
explained above, the contributions from these states to the
overall rate are expected to be relatively small at the lower
end of the density scale presented here and slowly increase
at higher excitation energies. Also shown in Fig. 9 are the
rates determined from the theoretical strength distributions
described above, and the single-state approximation presently
implemented in NuLib [11,30,77]. For the latter, �E was 2.5
MeV for the case of 86Kr.

The electron-capture rates derived from the shell-model
and QRPA calculations are consistent with the experimental
result, as they both fall within the experimental uncertainties.
Conversely, the rates obtained by the single-state approxima-
tion are much higher, exceeding the electron-capture rates
estimated based on the data by about two orders of magnitude.
At high stellar temperatures, Pauli unblocking effects will
increase the electron-capture rates [20], but in cases such as
86Kr, where Pauli blocking is not complete at zero temper-
ature, such increases are likely small [20]. The placement
of a single state at one fixed excitation energy of 2.5 MeV
with a Gamow-Teller strength of 4.6 is inconsistent with the
present data. If a single-state approximation were to be used
to represent the present experimental results, then a Gamow-
Teller strength of less than 0.03 or an excitation energy in
excess of 20 MeV would be required. Microscopic models
are needed to more accurately estimate electron-capture rates
for astrophysical simulations. These models can be tested at
zero temperature against available experimental data. We note
that a similar conclusion was drawn on the basis of a recent
88Sr(t, 3He + γ ) experiment [31].

B. New rate table

Because of the importance of the region of nuclei sur-
rounding the N = 50 shell closure, a new electron-capture
rate table was developed for the use in astrophysical simu-
lations that contained, for 78 nuclei in and around the high-
sensitivity region [13], rates calculated on the basis of the
QRPA framework described in Sec. III D. QRPA calculations
were chosen over shell-model calculations in this case because
calculations were needed for a large number of nuclei both
above and below the N = 50 shell closure. In addition, these
QRPA calculations can be extended in the future to include
temperature-dependent effects.

The nuclei included were 75−76Fe, 75−78Co, 75−80Ni,
75−82Cu, 75−84Zn, 75−85Ga, 76−85Ge, 75−85As, 80−85Se,
82−85Br, 84−86Kr, 88Sr, 90Zr, and 93Nb. The ground-state Q
value was obtained from experimental data where available
and from the Hartree-Fock-Bogoliubov solution according to
the approximation in Ref. [78] for nuclei lacking experimental
data. Additionally, the spin and parity of the ground states of
the relevant nuclei were obtained from experimental assign-
ments, and from the Gallagher and Moszkowski rule [79], for
nuclei lacking definite assignments. Although these calcula-
tions do not yet contain temperature-dependent effects that
might increase the electron-capture rates, these simulations
provide important insights in the maximum effects that can

045805-10

86Kr

For terrestrial or astrophysical environments.
Developed a non-zero-temperature FAM.



Most Recently: Two-Body Current
Evan Ney

Leading order:
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Higher order:
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Most Recently: Two-Body Current
Evan Ney
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Quenching in the sd and pf Shells

Resolving the quenching puzzle of ! decays: medium-mass nuclei

IMSRG calculation, Gysbers et al

Some quenching from correlations omitted by the shell model.

But a lot comes from the two-body current.

In these A < 50 nuclei, β-decay quenching doesn’t much depend
on Z and N. But what about in heavier nuclei?



Z- and N-Dependence of Quenching from Currents
Integrated GT Strength

Three sets of chiral parameters, no contact
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Effect on β-Decay Rates

Difference from rate with one-body operator, with gA = 1.0

Focus on green squares

84 92 100 108 116 124

Neutron Number N

0

2

4

6

8

10

12

R
at

e
D

iff
er

en
ce

[%
]

(a)

98 108 118 128 138 148 158

Neutron Number N

−10

0

10

20

30

40

R
at

e
D

iff
er

en
ce

[%
]

(b) Full

DMEexc.+Fulldir.

DMEexc.

Sn Gd

Two-body current has larger effect in neutron-rich nuclei.
Quenching of rates decreases and can even become enhancement
near the drip line.

Why?



Enhancement of Low-Lying Strength
Can occur in neutron-rich isotopes
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Beyond QRPA
Second RPA with D. Gambacurta and M. Grasso

Second RPA: Add 4p-4h basic excitations to RPA 2p-2h excitations.
Should better describe spreading widths and low-lying strength.

GT strength in 48Ca Summed strength
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Simpler Version: QRPA + Quasiparticle-Vibration Coupling

RPA response function

(again for r-process simulations) in a rea-
sonable amount of CPU time. Second
QRPA was my first choice. I have already
worked a little with second RPA, with-
out the “Q” [63]; it reproduces resonance
widths better than the ordinary RPA with-
out violating the usual sum rules. But
I could not find a good way to handle
its large and complex four-quasiparticle
space in deformed nuclei. I have thus

settled on a version of the time-blocking
approximation (TBA) [64, 65, 66, 67] that
is also known as the quasiparticle-phonon
model [68, 69, 70, 71]. To make a dia-
grammatic representation easier to under-
stand, I will now discuss how it extends
the RPA (no collective pairing) rather than
the QRPA; the generalization to pairing
and the QRPA is straightforward.
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The strength of an operator X̂ to an ex-
cited state at energy ~! is proportional to
the imaginary part of the RPA linear re-
sponse ⇧ to a perturbation by X̂. The re-
sponse function⇧ can be viewed as a bub-
ble sum, with the action of X̂ at each end,
as in the top line (a) of the figure above
(The dashed line between bubbles is the
Skyrme interaction.) From a related sum,
one can also extract a core-polarization

correction, represented by the series of di-
agrams in the second line (b), to the two-
body Skyrme interaction VSk. The squig-
gly line represents a “phonon-exchange
potential,” corresponding to the excita-
tion, propagation, and de-excitation of a
set of collective phonons. The TBA calcu-
lation of the response repeats the bubble
sum for ⇧ in the top line, but includes
within the bubbles all terms in which at
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Has been applied in spherical nuclei, but never deformed
ones. We figured out how to build it into the FAM.
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ones. We figured out how to build it into the FAM.
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Has been applied in spherical nuclei, but never deformed
ones. We figured out how to build it into the FAM.



QVC Results
Called pnFAM* Here

Phonon-exchange diagrams:
phonons are like-particle
excitations

π ν π ν

π ν π ν

With Q. Liu

GT Distributions (gA = 1)

 0

 2

 4

 6

(a)

B
(G

T
)/

M
eV

pnFAM (q=0.62)
pnFAM* (q=0.62)

Exper. 82Se

 0

 10

 20

 0  5  10  15  20

(b)

S
um

m
ed

 B
(G

T
)

E (MeV)

 0

 2

 4

 6

 8

 10

 12

(a)

B
(G

T
)/

M
eV

pnFAM (q=0.62)
pnFAM* (q=0.62)

Exper. 150Nd

 0

 15

 30

 45

 0  5  10  15  20

(b)

S
um

m
ed

 B
(G

T
)

E (MeV)



Next

All these developments will require refitting of the time-odd
functional (and constants in the current) and UQ. There’s still a lot
to do on the road to more realistic DFT-based β-decay rates!

Whatever one can measure far from stability related to β decay,
GT distributions
charge-changing dipole and spin-dipole distributions
β-decay half lives

...

will be helpful.

Thanks for ListeningThanks for ListeningThanks for ListeningThanks for ListeningThanks for ListeningThanks for Listening
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