Developments in DFT for Weak Decay/Capture

J. Engel
Work with M. Mustonen, T. Shafer, E. Ney, Q. Liu,

C. Frohlich, D. Gambacurta, M. Grasso, G. McLaughlin, M. Mumpower,
N. Paar, A. Ravli¢, N. Schunck, R. Surman, R. Zegers, ...

May 24,2023



R-Process Abundances
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Nuclear Landscape

To convincingly locate the
site(s) of the r process, we
need to know reaction 126
rates, particularly S-decay
rates, in neutron-rich
nuclei.

To fully understand
supernova evolution, we
need to know
electron-capture rates for
lots of medium-mass
nuclei.




Starting Point: Mean-Field-Like Calculation (HFB)

Gives you ground state density, etc. This is where Skyrme
functionals have made their living.

Zr-102: normal density and pairing density
HFB, 2-D lattice, SLy4 + volume pairing
Ref: Artur Blazkiewicz, Vanderbilt, Ph.D. thesis (2005)

Neutron-Density Proton-Density
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HFB: 3,)=0.43 exp: 8,P=0.42(5) , J.K. Hwang et al., Phys. Rev. C (2006)

2/26/10 Volker Oberacker, Vanderbilt




QRPA

Self-consistent QRPA is time-dependent HFB with small harmonic
perturbation. Perturbing operator is f-decay transition operator.
Decay matrix elements obtained from response of nucleus to
perturbation.



Initial Skyrme Application: Spherical QRPA

Even Isotopes Only

126

Closed shell nuclei are spherical.



Later: Fast Skyrme QRPA in Deformed Nuclei

Finite-Amplitude Method (FAM) — Nakatsukasa et al.

TPacd K = 0,1

271 red = with tensor .
2, blue = no tensor ~ /'\
g FAN

of /

Strength functions
computed directly from
linear response, in orders
of magnitude less time
than with matrix QRPA.
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Later: Fast Skyrme QRPA in Deformed Nuclei

Finite-Amplitude Method (FAM) — Nakatsukasa et al.
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Strength functions
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linear response, in orders
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Beta-decay rates obtained Re [5(0)) I (S
by integrating strength i i
with phase-space
weighting function in
contour around excited
states below threshold.




Global Skyrme Fit for Even Nuclei

Mika Mustonen

Fit the charge-changing time-odd functional

ngcd —Cs S" + CAS S11 V2511 + C S11 T11 + C ]"

+C1/s11 -V X jy +C1 su - Fyy +C1VS (V 'sn)z + Vo X pn pair.

Included 7 GT resonance energies, 2 spin-dipole resonance
energies, 7 -decay rates in selected spherical and well-deformed
nuclei from light to heavy.



Results
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Results with All Nuclei

Evan Ney

Figured out how to adapt
FAM to treat odd-A and

odd-odd nuclei. T e

Even-even results

Uncertainty
(3 Outliers with r<-5)
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What's at Stake Here?

Significance of Factor-of-Two Uncertainty
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What's at Stake Here?

Significance of Factor-of-Two Uncertainty
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Electron Capture

Evan Ney
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For terrestrial or astrophysical environments.
Developed a non-zero-temperature FAM.



Most Recently: Two-Body Current
Evan Ney

Leading order: Consider very simple wave function

p
€
v
n
A
9 protons neutrons
Usual B-decay current



Most Recently: Two-Body Current
Evan Ney

Consider very simple wave function

®
P //

Leading order:

ga

Usual B-decay current

protons neutrons




Most Recently: Two-Body Current
Evan Ney

Leading order: Consider very simple wave function

p e o
v
n
A
9 protons neutrons
Usual B-decay current



Most Recently: Two-Body Current
Evan Ney

Leading order: Consider very simple wave function

p e o
14
n
ga protons neutrons
Usual B-decay current

Higher order: ()
€
n/p re. n/p P y
s v
- ~ S A+
n/pf n n/pk  n
C3, C
3y L4 protons neutrons
There are also contact terms...



Most Recently: Two-Body Current
Evan Ney

Leading order: Consider very simple wave function

p e o
14
n
ga protons neutrons
Usual B-decay current

Higher order: ()
_—
n/p p . n/p PAE y /
s 4
---- ~ -ZT--A+"' ()
n/p n n/p n
C3, C
3y L4 protons neutrons
There are also contact terms...



Most Recently: Two-Body Current

Evan Ney

Leading order:

ga

Usual B-decay current

Higher order:
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There are also contact terms...

Consider very simple wave function

protons neutrons
protons neutrons




Quenching in the sd and pf Shells
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Some quenching from correlations omitted by the shell model.

But a lot comes from the two-body current.

In these A < 50 nuclei, S-decay quenching doesn't much depend
onZandN. Butwhat about in heavier nuclei?



Z- and N-Dependence of Quenching from Currents
Integrated GT Strength

Three sets of chiral parameters, no contact
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EGM - E. Epelbaum, W. Gléckle, and U.-G. Meif3ner, Nucl. Phys. A 747, 362 (2005).
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Effect on g-Decay Rates

Rate Difference [%]

Difference from rate with one-body operator, with g4 = 1.0

Focus on green squares

! ]
-
12t (a) . w0k (b) " Ful -
o A DME®*c Fulldir ma
10 L AR b ® DME" ma®
A LA e p4e
8r ‘AA"- AAAAAAA“ 1 g .:‘o
_y AAA T 20r .:A ° b
o — 4 Z n
6r-m EE) .-E‘A
= L I i
4 A 10 .lA ..
4+ 1 EEEEmpg"A ()
n ° g Il.-..AAA o
= | mm AAA A A g0 i
5L 1 & ortaa aant e Gd
. .
®eop e00000% °
oF ".....0000..-' - —~10| @ ®eeq 4
L 1 L L L L L L L L L L
84 92 100 108 116 124 98 108 118 128 138 148 158

Neutron Number N

Neutron Number N

Two-body current has larger effect in neutron-rich nuclei.
Quenching of rates decreases and can even become enhancement
near the drip line.

Why?



Enhancement of Low-Lying Strength

Can occur in neutron-rich isotopes
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Density-dependence of current
means it does very little beyond the
nuclear surface.

~<— Typical transition in 134Sn

Unusual (and lowest-lying) transition
in 74sn



Beyond QRPA

Second RPA with D. Gambacurta and M. Grasso

Second RPA: Add 4p-4h basic excitations to RPA 2p-2h excitations.
Should better describe spreading widths and low-lying strength.
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Simpler Version: QRPA + Quasiparticle-Vibration Coupling

RPA response function
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Modification of particle-hole bubble by QVC



Simpler Version: QRPA + Quasiparticle-Vibration Coupling

RPA response function

Has been applied in spherical nuclei, but never deformed
ones. We figured out how to build it into the FAM.
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Modification of particle-hole bubble by QVC




QVC Results

Called pnFAM* Here

Phonon-exchange diagrams:
phonons are like-particle
excitations
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Next

All these developments will require refitting of the time-odd
functional (and constants in the current) and UQ. There’s still a lot
to do on the road to more realistic DFT-based 3-decay rates!

Whatever one can measure far from stability related to B decay,
» GT distributions
» charge-changing dipole and spin-dipole distributions
» B-decay half lives
> :
will be helpful.
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ThanKs for Listening



