

The role of nuclear radii in beta decay

processes

Chien-Yeah Seng

University of Washington and FRIB, Michigan State University

seng@frib.msu.edu

"Theoretical Justifications and Motivations for High-Profile FRIB Experiments", FRIB

24 May, 2023

Many unresolved problems call for physics beyond the Model (BSM) !

Image credit: Wikipedia

Why is there much more matter than antimatter in the observed universe?

What is the origin of dark energy and dark matter?

Image credit: Jefferson Lab

What is the nature of the neutrino mass?

Precision Frontier: Measure things very precisely, and look for their **deviations** from SM prediction!

Nuclear beta decay

Observables measured at **0.01%** level! Probes new physics at the scale:

$$\left(\frac{v_{\rm H}}{\Lambda_{\rm BSM}}\right)^2 \sim 0.01\% \implies \Lambda_{\rm BSM} \sim 20 \text{ TeV}$$

Competitive to high-energy experiments at LHC!

Allowed beta decay: $\Delta J = 0, \pm 1$ $\Delta \pi = 0$

Lee-Yang Lagrangian

$$\mathcal{L}_{LY} = -\bar{p}\gamma^{\mu}n\left(C_{V}^{+}\bar{e}\gamma_{\mu}\nu_{L} + C_{V}^{-}\bar{e}\gamma_{\mu}\nu_{R}\right) - \bar{p}\gamma^{\mu}\gamma_{5}n\left(C_{A}^{+}\bar{e}\gamma_{\mu}\nu_{L} - C_{A}^{-}\bar{e}\gamma_{\mu}\nu_{R}\right) - \bar{p}n\left(C_{S}^{+}\bar{e}\nu_{L} + C_{S}^{-}\bar{e}\nu_{R}\right) - \frac{1}{2}\bar{p}\sigma^{\mu\nu}n\left(C_{T}^{+}\bar{e}\sigma_{\mu\nu}\nu_{L} + C_{T}^{-}\bar{e}\sigma_{\mu\nu}\nu_{R}\right) + \bar{p}\gamma_{5}n\left(C_{P}^{+}\bar{e}\nu_{L} - C_{P}^{-}\bar{e}\nu_{R}\right) + h.c.$$

$$\Gamma_i = (1+\delta_i) \frac{M_F^2 m_e^5}{4\pi^3} f_V^i \hat{\xi}_i \left[1 + \gamma_i b_i \left\langle \frac{m_e}{E_e} \right\rangle_i \right]$$

$$\begin{split} \Gamma_{i} &= (1 + \delta_{i}) \frac{M_{F}^{2} m_{e}^{5}}{4\pi^{3}} f_{V}^{i} \hat{\xi}_{i} \left[1 + \gamma_{i} b_{i} \left\langle \frac{m_{e}}{E_{e}} \right\rangle_{i} \right] \\ \\ & \\ \text{Radiative corrections (RC) +} \\ \text{isospin-breaking corrections (ISB)} \end{split} \\ \end{split}$$

- Assuming SM couplings: Deduce V_{ud}
- Variation of lifetime over nuclei: Constrain BSM couplings

Interplay with LHC experiments:

$$C_{S,T}^+ = \sqrt{2}G_F V_{ud}g_S \epsilon_{S,T}$$

Interplay with LHC experiments:

See Petr Navratil's talk

$$C_{S,T}^+ = \sqrt{2}G_F V_{ud}g_S \epsilon_{S,T}$$

Role of charge radii measurements:

1. Beta decay form factors

2. Isospin-symmetry-breaking corrections

Role of charge radii measurements:

1. Beta decay form factors

2. Isospin-symmetry-breaking corrections

"Superallowed" beta decays of T=1, J^p=0⁺ nuclei

 $i(0^+) \to f(0^+) + e^+ + \nu_e$

Provides the **best measurement** of V_{ud} :

- > 23 measured transitions
- > 15 with lifetime precision better than 0.23%

 $\rho_w(r)$: Distribution of "active" nucleons eligible for weak transitions in a nucleus

 $\rho_w(r)$: Distribution of "active" nucleons eligible for weak transitions in a nucleus

Old : Impulse approximation in non-relativistic (NR) nuclear models.

$$\langle f|O|i
angle = \sum_{lphaeta} \langle lpha|O|eta
angle \langle f|a^{\dagger}_{lpha}a_{eta}|i
angle$$

 $lpha, eta$: single-nucleon states

Hardy and Towner, 2005 PRC

How reliable is such approximation at 0.01% level?

 $\rho_w(r)$: Distribution of "active" nucleons eligible for weak transitions in a nucleus

New: Utilize CVC to relate (charged) weak distribution to nuclear charge distributions Hostein, 1974 RMP; CYS, 2023 PRL

$$\rho_w(r) = \rho_{\mathrm{Ch},1}(r) + Z_0 \left(\rho_{\mathrm{Ch},0}(r) - \rho_{\mathrm{Ch},1}(r)\right)$$
$$= \rho_{\mathrm{Ch},1}(r) + \frac{Z_{-1}}{2} \left(\rho_{\mathrm{Ch},-1}(r) - \rho_{\mathrm{Ch},1}(r)\right)$$

 $\rho_w(r)$: Distribution of "active" nucleons eligible for weak transitions in a nucleus

Form factor expansion:

$$F(q^2) = 1 + \frac{q^2}{6} \langle r^2 \rangle + \dots \\ \frac{1}{6} \frac{\langle r^2 \rangle}{\text{M.S. radius}}$$

Form factor expansion:

$$F(q^2) = 1 + \frac{q^2}{6} \langle r^2 \rangle + \dots \\ \text{M.S. radius}$$

Existing charge radii compilation:

- Fricke and Heilig, "Nuclear charge radii", 2004
- Angeli and Marinova, Atom.Data Nucl.Data Tabl. 99 (2013) 69
- Li, Luo and Wang, Atom.Data Nucl.Data Tabl. 140 (2021) 101440
- New measurements, e.g. ³⁸Ca, ^{38m}K, ⁵⁴Ni...

Form factor expansion:

$$F(q^2) = 1 + \frac{q^2}{6} \langle r^2 \rangle + \dots$$
 M.S. radius

Existing charge radii compilation:

- Fricke and Heilig, "Nuclear charge radii", 2004
- Angeli and Marinova, Atom.Data Nucl.Data Tabl. 99 (2013) 69
- Li, Luo and Wang, Atom.Data Nucl.Data Tabl. 140 (2021) 101440
- New measurements, e.g. ³⁸Ca, ^{38m}K, ⁵⁴Ni...

Data + isospin predicts unexpectedly large (charged) weak radii!

E.g.
$$\langle r_{\rm Ch}^2 \rangle_{^{38}{\rm Ar}}^{1/2} = 3.4028(19) \, {\rm fm}$$

 $\langle r_{\rm Ch}^2 \rangle_{^{38}{\rm Ca}}^{1/2} = 3.467(1) \, {\rm fm}$ $\land \langle r_w^2 \rangle^{1/2} = 4.00(4) \, {\rm fm}$

Simplified shell model prediction:

$$\left\langle r_w^2 \right\rangle^{1/2} \approx 3.62 \,\mathrm{fm}$$

Α	$R_{\rm Ch,-1}$ (fm)	$R_{\rm Ch,0}~({\rm fm})$	$R_{\rm Ch,1}$ (fm)	_
10	¹⁰ ₆ C	$^{10}_{5}{ m B(ex)}$	¹⁰ ₄ Be: 2.3550(170) ^a	-
14	¹⁴ ₈ O	$^{14}_{7}N(ex)$	${}_{6}^{14}\text{C:}\ 2.50\ 25(87)^{a}$	
18	$^{18}_{10}$ Ne: 2.9714(76) ^a	${}_{9}^{18}F(ex)$	¹⁸ O: 2.77 26(56) ^a	
22	$^{22}_{12}$ Mg: 3.0691(89) ^b	$^{22}_{11}$ Na(ex)	$^{22}_{10}$ Ne: 2.9525(40) ^a	
26	²⁶ 14Si	²⁶ / ₁₃ A1	$^{26}_{12}$ Mg: 3.0337(18) ^a	
30	$^{30}_{16}S$	$^{30}_{15}P(ex)$	³⁰ ₁₄ Si: 3.1336(40) ^a	
34	³⁴ ₁₈ Ar: 3.3654(40) ^a	³⁴ ₁₇ Cl	³⁴ ₁₆ S: 3.2847(21) ^a	
38	$^{38}_{20}$ Ca: 3.467(1) ^c	$^{38m}_{19}$ K: 3.437(4) ^d	³⁸ ₁₈ Ar: 3.4028(19) ^a	
42	$^{42}_{22}$ Ti	$^{42}_{21}$ Sc: 3.5702(238) ^a	⁴² ₂₀ Ca: 3.5081(21) ^a	
46	⁴⁶ ₂₄ Cr	⁴⁶ ₂₃ V	⁴⁶ ₂₂ Ti: 3.6070(22) ^a	
50	⁵⁰ ₂₆ Fe	⁵⁰ ₂₅ Mn: 3.7120(196) ^a	⁵⁰ ₂₄ Cr: 3.6588(65) ^a	
54	$^{54}_{28}$ Ni: 3.738(4) ^e	⁵⁴ 27Co	⁵⁴ ₂₆ Fe: 3.6933(19) ^a	
62	⁶² ₃₂ Ge	⁶² ₃₁ Ga	$^{62}_{30}$ Zn: 3.9031(69) ^b	
66	⁶⁶ ₃₄ Se	66 33 As	⁶⁶ ₃₂ Ge	
70	⁷⁰ ₃₆ Kr	$^{70}_{35}{ m Br}$	⁷⁰ ₃₄ Se	
74	⁷⁴ ₃₈ Sr	$^{74}_{37}$ Rb: 4.1935(172) ^b	⁷⁴ ₃₆ Kr: 4.1870(41) ^a	_ 24

Α	$R_{\mathrm{Ch},-1}$ (fm)	$R_{\rm Ch,0}~({\rm fm})$	$R_{\rm Ch,1}$ (fm)
10	$^{10}_{6}C$	$^{10}_{5}B(ex)$	${}^{10}_{4}\text{Be: } 2.3550(170)^{a}$
14	¹⁴ ₈ O	$^{14}_{7}N(ex)$	${}_{6}^{14}\text{C:}\ 2.50\ 25(87)^{a}$
18	¹⁸ ₁₀ Ne: 2.9714(76) ^a	$^{18}_{9}$ F(ex)	¹⁸ ₈ O: 2.77 26(56) ^a
22	$^{22}_{12}$ Mg: 3.0691(89) ^b	$^{22}_{11}$ Na(ex)	$^{22}_{10}$ Ne: 2.9525(40) ^a
26	²⁶ ₁₄ Si	$^{26m}_{13}$ Al	²⁶ ₁₂ Mg: 3.0337(18) ^a
30	³⁰ ₁₆ S	$^{30}_{15}P(ex)$	$^{30}_{14}$ Si: 3.1336(40) ^a
34	³⁴ ₁₈ Ar: 3.3654(40) ^a	³⁴ ₁₇ Cl	³⁴ ₁₆ S: 3.2847(21) ^a
38	$^{38}_{20}$ Ca: 3.467(1) ^c	$^{38m}_{19}$ K: 3.437(4) ^d	$^{38}_{18}$ Ar: 3.4028(19) ^a
42	⁴² ₂₂ Ti	⁴² ₂₁ Sc: 3.5702(238) ^a	$^{42}_{20}$ Ca: 3.5081(21) ^a
46	⁴⁶ ₂₄ Cr	$^{46}_{23}$ V	$^{46}_{22}$ Ti: 3.6070(22) ^a
50	⁵⁰ ₂₆ Fe	⁵⁰ ₂₅ Mn: 3.7120(196) ^a	⁵⁰ ₂₄ Cr: 3.6588(65) ^a
54	$^{54}_{28}$ Ni: 3.738(4) ^e	⁵⁴ 27Co	⁵⁴ ₂₆ Fe: 3.6933(19) ^a
62	⁶² ₃₂ Ge	⁶² Galable	$^{62}_{30}$ Zn: 3.9031(69) ^b
66	⁶⁶ ₃₄ Se	t data avan	66 32 Ge
70	⁷⁰ Kufficier	⁷⁰ ₃₅ Br	⁷⁰ ₃₄ Se
74	⁷⁴ ₃₈ Sr	$^{74}_{37}$ Rb: 4.1935(172) ^b	$^{74}_{36}$ Kr: 4.1870(41) ^a 2

Α	$R_{\mathrm{Ch},-1}~(\mathrm{fm})$	$R_{\rm Ch,0}~({\rm fm})$	$R_{\rm Ch,1}~({\rm fm})$	_
10	¹⁰ ₆ C	$^{10}_{5}B(ex)$	¹⁰ ₄ Be: 2.3550(170) ^a	
14	¹⁴ ₈ O	$^{14}_{7}N(ex)$	${}_{6}^{14}\text{C:}\ 2.50\ 25(87)^{a}$	
18	¹⁸ ₁₀ Ne: 2.9714(76) ^a	${}_{9}^{18}F(ex)$	¹⁸ ₈ O: 2.77 26(56) ^a	
22	$^{22}_{12}$ Mg: 3.0691(89) ^b	$^{22}_{11}$ Na(ex)	$^{22}_{10}$ Ne: 2.9525(40) ^a	
26	²⁶ ₁₄ Si	^{26m} ₁₃ Al	$^{26}_{12}$ Mg: 3.0337(18) ^a	
30	³⁰ ₁₆ S	$^{30}_{15}P(ex)$	³⁰ ₁₄ Si: 3.1336(40) ^a	
34	³⁴ ₁₈ Ar: 3.3654(40) ^a	³⁴ ₁₇ Cl	³⁴ ₁₆ S: 3.2847(21) ^a	
38	$^{38}_{20}$ Ca: 3.467(1) ^c	$^{38m}_{19}$ K: 3.437(4) ^d	³⁸ ₁₈ Ar: 3.4028(19) ^a	
42	⁴² ₂₂ Ti	$^{42}_{21}$ Sc: 3.5702(238) ^a	⁴² ₂₀ Ca: 3.5081(21) ^a	
46	⁴⁶ ₂₄ Cr	$^{46}_{23}V$	⁴⁶ ₂₂ Ti: 3.6070(22) ^a	
50	⁵⁰ ₂₆ Fe	⁵⁰ ₂₅ Mn: 3.7120(196) ^a	⁵⁰ ₂₄ Cr: 3.6588(65) ^a	
54	$^{54}_{28}$ Ni: 3.738(4) ^e	⁵⁴ 27Co	⁵⁴ ₂₆ Fe: 3.6933(19) ^a	
62	⁶² ₃₂ Ge	62 31Ga	$^{62}_{30}$ Zn: 3.9031(69) ^b	
66	⁶⁶ ₃₄ Se	66 33 As	eeded ⁶⁶ ₃₂ Ge	
70	⁷⁰ ₃₆ Kr	measurement	⁷⁰ ₃₄ Se	
74	One more	$^{74}_{37}$ Rb: 4.1935(172) ^b	$^{74}_{36}$ Kr: 4.1870(41) ^a	_ 26

Preliminary re-anal	ysis of	statistical	rate functions:
---------------------	---------	-------------	-----------------

Transition	$f_{ m new}$	$f_{ m HT}$	$rac{f_{ m new}-f_{ m HT}}{f_{ m new}}~(\%)$
$^{18}\mathrm{Ne}{ ightarrow}^{18}\mathrm{F}$	$134.62(0)_{\rm rad}(0)_{\rm shape}(17)_{Q_{\rm EC}}$	$134.64(17)_{Q_{\rm EC}}$	$-0.01(0)_{\rm rad}(0)_{\rm shape}$
$^{22}Mg \rightarrow ^{22}Na$	$418.27(1)_{\rm rad}(1)_{\rm shape}(13)_{Q_{\rm EC}}$	$418.35(13)_{Q_{\rm EC}}$	$-0.02(0)_{\rm rad}(0)_{\rm shape}$
$^{34}\mathrm{Ar}{ ightarrow}^{34}\mathrm{Cl}$	$3409.89(16)_{\rm rad}(18)_{\rm shape}(25)_{Q_{\rm EC}}$	$3410.85(25)_{Q_{\rm EC}}$	$-0.03(0)_{\rm rad}(1)_{\rm shape}$
$^{38}\text{Ca}{ ightarrow}^{38m}\text{K}$	$5327.49(14)_{\rm rad}(36)_{\rm shape}(31)_{Q_{\rm EC}}$	$5328.88(31)_{Q_{\rm EC}}$	$-0.03(0)_{\rm rad}(1)_{\rm shape}$
$^{42}\mathrm{Ti}{\rightarrow}^{42}\mathrm{Sc}$	$7124.3(5.7)_{\rm rad}(0.8)_{\rm shape}(1.4)_{Q_{\rm EC}}$	$7130.1(1.4)_{Q_{\rm EC}}$	$-0.08(8)_{\rm rad}(1)_{\rm shape}$
$^{50}\text{Fe}{\rightarrow}^{50}\text{Mn}$	$15053(18)_{\rm rad}(3)_{\rm shape}(60)_{Q_{\rm EC}}$	$15060(60)_{Q_{\rm EC}}$	$-0.04(12)_{\rm rad}(2)_{\rm shape}$
$^{54}Ni \rightarrow ^{54}Co$	$21137(3)_{\rm rad}(1)_{\rm shape}(52)_{Q_{\rm EC}}$	$21137(57)_{Q_{\rm EC}}$	$+0.00(2)_{\rm rad}(0)_{\rm shape}$
$^{34}\mathrm{Cl} \rightarrow ^{34}\mathrm{S}$	$1995.076(81)_{\rm rad}(103)_{\rm shape}(94)_{Q_{\rm EC}}$	$1996.003(96)_{Q_{\rm EC}}$	$-0.05(0)_{\rm rad}(1)_{\rm shape}$
$^{38m}\mathrm{K}{\rightarrow}^{38}\mathrm{Ar}$	$3296.32(8)_{\rm rad}(21)_{\rm shape}(15)_{Q_{\rm EC}}$	$3297.39(15)_{Q_{\rm EC}}$	$-0.03(0)_{\rm rad}(1)_{\rm shape}$
$^{42}\text{Sc}{\rightarrow}^{42}\text{Ca}$	$4468.53(3.36)_{\rm rad}(0.52)_{\rm shape}(0.46)_{Q_{\rm EC}}$	$4472.46(46)_{Q_{\rm EC}}$	$-0.09(8)_{\rm rad}(1)_{\rm shape}$
$^{50}Mn \rightarrow ^{50}Cr$	$10737.93(11.50)_{\rm rad}(2.02)_{\rm shape}(0.50)_{Q_{\rm EC}}$	$10745.99(49)_{Q_{\rm EC}}$	$-0.08(11)_{\rm rad}(2)_{\rm shape}$
$^{54}\mathrm{Co}{ ightarrow}^{54}\mathrm{Fe}$	$15769.4(2.3)_{\rm rad}(0.7)_{\rm shape}(2.7)_{Q_{\rm EC}}$	$15766.8(2.7)_{Q_{\rm EC}}$	$+0.02(1)_{\rm rad}(0)_{\rm shape}$
$^{74}\text{Rb}{ ightarrow}^{74}\text{Kr}$	$47326(127)_{\rm rad}(18)_{\rm shape}(94)_{Q_{\rm EC}}$	$47281(93)_{Q_{\rm EC}}$	$+0.1\overline{0(27)_{\mathrm{rad}}(4)_{\mathrm{shape}}}$

CYS, PRELIMINARY RESULTS

Shifts at 0.01% level are observed!

Upward shift of V_{ud} ?

Role of charge radii measurements:

1. Beta decay form factors

2. Isospin-symmetry-breaking corrections

Isospin symmetry breaking **(ISB)** correction alters the Fermi matrix element:

$$|M_F|^2 = |\langle f | \hat{\tau}_+ | i \rangle|^2 = |M_F^0|^2 (1 - \delta_C)$$

Caused by **isospin mixing** of nuclear states, predominantly due to Coulomb repulsion between protons

Crucial in obtaining a nucleus-independent Ft-value from the nucleus-dependent ft-values:

$$|V_{ud}|^2 \mathcal{F}t (1 + \Delta_R^V) = 2984.43 \,\mathrm{s}$$
$$\mathcal{F}t = ft (1 + \delta_R') (1 + \delta_{\mathrm{NS}} - \delta_{\mathrm{C}})$$

- Computing δ_c: Classic problem over
 6 decades! MacDonald, 1958 Phys.Rev
- Current input adopted in global analysis: Shell model + Woods-Saxon (WS) potential
- Successful in aligning Ft values of different superallowed transitions

Hardy and Towner, 2020 PRC

Transitions	$\delta_{ m C}$ (%)				
	WS	DFT	$_{\mathrm{HF}}$	RPA	Micro
$^{26m}\mathrm{Al} \rightarrow ^{26}\mathrm{Mg}$	0.310	0.329	0.30	0.139	0.08
$^{34}\mathrm{Cl} \rightarrow ^{34}\mathrm{S}$	0.613	0.75	0.57	0.234	0.13
$^{38m}\mathrm{K}\rightarrow ^{38}\!\mathrm{Ar}$	0.628	1.7	0.59	0.278	0.15
$^{42}\mathrm{Sc} \rightarrow ^{42}\mathrm{Ca}$	0.690	0.77	0.42	0.333	0.18
$^{46}\mathrm{V} \rightarrow ^{46}\mathrm{Ti}$	0.620	0.563	0.38	/	0.21
$^{50}\mathrm{Mn} \rightarrow ^{50}\mathrm{Cr}$	0.660	0.476	0.35	/	0.24
$^{54}\mathrm{Co} \rightarrow ^{54}\mathrm{Fe}$	0.770	0.586	0.44	0.319	0.28

(Selected results)

Caveats:

- Significant model dependence.
- No direct experimental constraint
- Ab-initio calculations still in preliminary stages

Probing isospin mixing in experiment?

Nuclear mass splitting: $\delta E_n = {}_0 \langle n | V | n \rangle_0$ X

Second-class current: doubly-suppressed (kinematics*ISB), null results so far Minamisono et al., 2011 PRC

$$V_{\mu} = \bar{u}(p_2) \left(g_V \gamma_{\mu} - i \frac{g_M - g_V}{2M} \sigma_{\mu\nu} q^{\nu} + \frac{g_S}{2M} q_{\mu} \right) u(p_1),$$

$$A_{\mu} = -\bar{u}(p_2) \gamma_5 \left(g_A \gamma_{\mu} - i \frac{g_T}{2M} \sigma_{\mu\nu} q^{\nu} + \frac{g_P}{2M} q_{\mu} \right) u(p_1).$$

Isospin mixing can be probed through the variation of charge radii within the same nuclear isomultiplet

Consider T=1 system. The non-zeroness of

$$\Delta M_B^{(1)} \equiv \frac{1}{2} \left(Z_{+1} r_{\mathrm{ch},+1}^2 + Z_{-1} r_{\mathrm{ch},-1}^2 \right) - Z_0 r_{\mathrm{ch},0}^2$$

signifies ISB. No double suppression! Seng and Gorchtein, 2023 PLB

Simple isovector-monopole-dominance picture: $\delta_{
m C}\propto\Delta M_B^{(1)}$

Therefore, the ability to reproduce $\Delta M_{\rm B}{}^{\rm (1)}$ serves as a test of the theory accuracy of δ_c

Challenge: *THREE* charge radii need to be measured!

Α	$R_{\mathrm{Ch},-1}$ (fm)	$R_{\rm Ch,0}~({\rm fm})$	$R_{\rm Ch,1}$ (fm)	
10	¹⁰ ₆ C	$^{10}_{5}B(ex)$	¹⁰ ₄ Be: 2.3550(170) ^a	•
14	¹⁴ ₈ O	$^{14}_{7}N(ex)$	¹⁴ ₆ C: 2.50 25(87) ^a	
18	$^{18}_{10}$ Ne: 2.9714(76) ^a	${}_{9}^{18}F(ex)$	¹⁸ ₈ O: 2.77 26(56) ^a	
22	$^{22}_{12}$ Mg: 3.0691(89) ^b	$^{22}_{11}$ Na(ex)	$^{22}_{10}$ Ne: 2.9525(40) ^a	
26	²⁶ 14Si	$^{26m}_{13}A1$	²⁶ ₁₂ Mg: 3.0337(18) ^a	
30	$^{30}_{16}S$	$^{30}_{15}P(ex)$	³⁰ ₁₄ Si: 3.1336(40) ^a	
34	³⁴ ₁₈ Ar: 3.3654(40) ^a	³⁴ ₁₇ Cl	³⁴ ₁₆ S: 3.2847(21) ^a	
38	$^{38}_{20}$ Ca: 3.467(1) ^c	$^{38m}_{19}$ K: 3.437(4) ^d	$^{38}_{18}$ Ar: 3.4028(19) ^a	
42	$^{42}_{22}$ Ti	$^{42}_{21}$ Sc: 3.5702(238) ^a	⁴² ₂₀ Ca: 3.5081(21) ^a	
46	⁴⁶ 24Cr	⁴⁶ ₂₃ V	⁴⁶ ₂₂ Ti: 3.6070(22) ^a	
50	⁵⁰ ₂₆ Fe	⁵⁰ ₂₅ Mn: 3.7120(196) ^a	⁵⁰ ₂₄ Cr: 3.6588(65) ^a	
54	$^{54}_{28}$ Ni: 3.738(4) ^e	⁵⁴ 27Co	⁵⁴ ₂₆ Fe: 3.6933(19) ^a	
62	⁶² ₃₂ Ge	⁶² ₃₁ Ga	$^{62}_{30}$ Zn: 3.9031(69) ^b	
66	⁶⁶ ₃₄ Se	66 33 As	⁶⁶ ₃₂ Ge	
70	⁷⁰ ₃₆ Kr	$^{70}_{35}{ m Br}$	⁷⁰ ₃₄ Se	
74	⁷⁴ ₃₈ Sr	$^{74}_{37}$ Rb: 4.1935(172) ^b	$^{74}_{36}$ Kr: 4.1870(41) ^a	33

Α	$R_{\rm Ch,-1}$ (fm)	$R_{\rm Ch,0}~({\rm fm})$	$R_{\rm Ch,1}~({\rm fm})$
10	¹⁰ ₆ C	$_{5}^{10}B(ex)$	¹⁰ ₄ Be: 2.3550(170) ^a
14	¹⁴ ₈ O	$^{14}_{7}N(ex)$	${}^{14}_{6}\text{C:}\ 2.50\ 25(87)^{a}$
18	¹⁸ ₁₀ Ne: 2.9714(76) ^a	$^{18}_{9}$ F(ex)	¹⁸ ₈ O: 2.77 26(56) ^a
22	$^{22}_{12}$ Mg: 3.0691(89) ^b	$^{22}_{11}$ Na(ex)	$^{22}_{10}$ Ne: 2.9525(40) ^a
26	²⁶ ₁₄ Si	$^{26m}_{13}A1$	²⁶ ₁₂ Mg: 3.0337(18) ^a
30	³⁰ ₁₆ S	$^{30}_{15}P(ex)$	³⁰ ₁₄ Si: 3.1336(40) ^a
34	$^{34}_{18}$ Ar: 3.3654(40) ^a	³⁴ ₁₇ Cl	³⁴ ₁₆ S: 3.2847(21) ^a
38	$^{38}_{20}$ Ca: 3.467(1) ^c	$^{38m}_{19}$ K: 3.437(4) ^d	$^{38}_{18}$ Ar: 3.4028(19) ^a
42	42 T ;	42 Sec. 3 5702(238) ^a	42Ca: 3.5081(21) ^a

$$A = 38$$
 : $\Delta M_B^{(1)} = -0.03(12)_+(52)_0(7)_-\text{fm}^2$

⁷⁴₃₈Sr

74

Possible future measurement of r(^{38m}K) at TRIUMF with ~4 times better in precision

34

Α	$R_{\mathrm{Ch},-1}~(\mathrm{fm})$	$R_{\rm Ch,0}~({\rm fm})$	$R_{\rm Ch,1}~({\rm fm})$
10	$^{10}_{6}$ C	${}_{5}^{10}B(ex)$	$^{10}_{4}$ Be: 2.3550(170) ^a
14	¹⁴ ₈ O	$^{14}_{7}N(ex)$	${}_{6}^{14}\text{C:}\ 2.50\ 25(87)^{a}$
18	¹⁸ ₁₀ Ne: 2.9714(76) ^a	${}_{9}^{18}F(ex)$	¹⁸ ₈ O: 2.77 26(56) ^a
22	$^{22}_{12}$ Mg: 3.0691(89) ^b	$^{22}_{11}Na(ex)$	$^{22}_{10}$ Ne: 2.9525(40) ^a
26	²⁶ ₁₄ Si	$^{26m}_{13}A1$	²⁶ ₁₂ Mg: 3.0337(18) ^a
30	³⁰ ₁₆ S	$^{30}_{15}P(ex)$	³⁰ ₁₄ Si: 3.1336(40) ^a
34	³⁴ ₁₈ Ar: 3.3654(40) ^a	³⁴ ₁₇ Cl	³⁴ ₁₆ S: 3.2847(21) ^a
38	$^{38}_{20}$ Ca: 3.467(1) ^c	$^{38m}_{19}$ K: 3.437(4) ^d	$^{38}_{18}$ Ar: 3.4028(19) ^a
42	⁴² ₂₂ Ti	$^{42}_{21}$ Sc: 3.5702(238) ^a	$^{42}_{20}$ Ca: 3.5081(21) ^a
46	⁴⁶ ₂₄ Cr	⁴⁶ ₂₃ V	⁴⁶ ₂₂ Ti: 3.6070(22) ^a
50	⁵⁰ ₂₆ Fe	⁵⁰ ₂₅ Mn: 3.7120(196) ^a	$^{50}_{24}$ Cr: 3.6588(65) ^a
54	$^{54}_{28}$ Ni: 3.738(4) ^e	⁵⁴ 27Co	$^{54}_{26}$ Fe: 3.6933(19) ^a
62	⁶² ₃₂ Ge	⁶² 31Ga	eedec 3.9031(69) ^b
66	⁶⁶ ₃₄ Se	e measurement	66 32Ge
70	30 ne mor	⁷⁰ ₃₅ Br	⁷⁰ ₃₄ Se
74	⁷⁴ ₃₈ Sr	$^{74}_{37}$ Rb: 4.1935(172) ^b	$^{74}_{36}$ Kr: 4.1870(41) ^a 38

Summary

- Nuclear beta decays offer precision tests of SM; various anomalies suggest the existence of new physics
- Measurements of **nuclear charge radii** provide important nuclear structure information relevant to beta decays:
 - (1) The (vector) decay form factor, determined by **TWO measured radii** through CVC;
 - (2) ISB correction in Fermi transitions, probed by **THREE measured** radii
- New data will critically impact the measurement of V_{ud} and the search of new physics (BSM couplings)