Collective phenomena and shell structure far from stability

Frédéric Nowacki¹

FRIB-TA Topical Program: Theoretical Justifications and Motivations for Early High-Profile FRIB Experiments

16-26 mai 2023 Facility for Rare Isotope Beams

¹Strasbourg-Madrid Shell-Model collaboration

THE DRAMA:

THE DRAMA:

• Theorists here in the room :

"None ! We don't need any !"

THE DRAMA:

• Theorists here in the room :

"None ! We don't need any !"

• Experimentalists here in the room : "All of them ! Let's measure all of them !"

THE DRAMA:

• Theorists here in the room :

"None ! We don't need any !"

• Experimentalists here in the room : "All of them ! Let's measure all of them !"

Fortunately, life has made us more reasonable ... and things more simple !

Shell Model: Physics Goals

Collective excitations:

• Deformation, Superdeformation,

Dipole/M1 resonances

- Superfluidity
- Symmetries

- define Effective Interaction
- $\mathcal{H}_{eff}\Psi_{eff} = E\Psi_{eff}$
- build and diagonalize Energy matrix

Weak processes:

- β decay
- ββ decay

 $[T^{0\nu}_{1/2}(0^+ \to 0^+)]^{-1} = G_{0\nu} |M^{0\nu}|^2 \langle m_\nu \rangle^2$

- · Vanishing of shell closures
- · New magic numbers

Ab Initio calculations:

- Chiral EFT realistic interactions
- 3N forces

Shell Model: Giant Computations

 exponential growth of basis dimensions:

$$D \sim \left(egin{array}{c} d_{\pi} \ p \end{array}
ight) \cdot \left(egin{array}{c} d_{
u} \ n \end{array}
ight)$$

In *pf* shell : ⁴⁸Cr 1,963,461 ⁵⁶Ni **1,087,455,228** In *pf-sdg* space : ⁷⁸Ni **210,046,691,518**

- Actual limits in limits in giant diagonalizations: 0.2 10¹² for ¹¹⁴Sn core excitations
- Some of the largest diagonalizations ever are performed in Strasbourg with relatively modest computationnal ressources:

Phys. Rev. C82 (2010) 054301, ibidem 064304

- <u>m scheme</u> ANTOINE code
- coupled scheme
- NATHAN code

E. Caurier et al., Rev. Mod. Phys. 77 (2005) 427; ANTOINE website

- Largest matrices up to now contain up to ~ 10¹⁴ non-zero matrix elements.
- This would require more than 1,000,000
 CD-ROM's to store the information for a single matrix !
- They cannot be stored on hard disk and are computed on the fly.

Discrete Non-Orthogonal Shell Model

Generator Coordinate Method: $|\Psi_{eff}\rangle = \sum_{i} f_{i} |\Phi_{i}\rangle$

- 1) Deformed Hartree-Fock (HF) Slater determinants
- 2) Restoration of rotational symmetry
- 3) Mixing of shapes:

?

Basis Truncation Method

choice of relevant deformed Hartree-Fock states

• E. Caurier's Minimization Technique:

(E. Caurier, Proc. on GCM, BLG report 484 (1975))

- Based on the variational principle
- Minimization of the energy of given states {J^π}
- Iterative procedure:

$$\Phi_1 \longrightarrow (\Phi_1, \Phi_2) \longrightarrow (\Phi_1, \Phi_2, \Phi_3) \cdots$$

$$N = 1$$

$$N = 1$$

$$N = 2$$

$$N = 3$$

Discrete Non-Orthogonal Shell Model

Generator Coordinate Method: $|\Psi_{\text{eff}}\rangle = \sum_{i} f_{i} |\Phi_{i}\rangle$

- 1) Deformed Hartree-Fock (HF) Slater determinants
- 2) Restoration of rotational symmetry
- 3) Mixing of shapes:

$|\Psi_{\rm eff}\rangle$ = + + + - ·

Intrinsic/Laboratory Description

• Deformation structure of nuclear states: $\{J^{\pi}_{\alpha}\}, q = (\beta, \gamma)$

$$\mathcal{M}^{(J)}_{lpha}(q, {\cal K}) = \sum_{q', {\cal K}'} [\hat{N}^{1/2}]^{(J)}_{{\cal K}'{\cal K}}(q', q) \, f^{(J)}_{lpha}(q', {\cal K}')$$

♦ Probability of a configuration (β, γ) :

$$\mathcal{P}_{\alpha}^{(J)}(q) = \sum_{K} \left| \mathcal{M}_{\alpha}^{(J)}(q,K) \right|^2$$

• particle-hole interpretation:

• K-quantum numbers:

$$P_{\alpha}^{(J)}(K) = \sum_{q} \left| M_{\alpha}^{(J)}(q,K) \right|^2$$

M-scheme

Discrete Non-Orthogonal Shell Model

PHYSICAL REVIEW C 105, 054314 (2022)

Nuclear structure within a discrete nonorthogonal shell model approach: New frontiers

D. D. Dao
and F. Nowacki Université de Strasbourg, CNRS, IPHC UMR7178, 23 rue du Loess, F-67000 Strasbourg, France

(Received 8 March 2022; accepted 6 May 2022; published 23 May 2022)

First "SM" calculations for superheavies !!!

Landscape of medium mass nuclei

Landscape of medium mass nuclei

Development of deformation at N=8,20,40,70

F. Nowacki, A. Obertelli and A. Poves

Progress in Particle and Nuclear Physics 120 (2021) 103866

Magic numbers are associated to energy gaps in the spherical mean field. Therefore, to promote particles above the Fermi levels costs energy However some intruders configurations can overwhelm their loss of monopole energy with their huge gain in correlation energy Several examples of this phenomenon exist in stable magic nuclei (as in ⁴⁰Ca nucleus) in the form of coexisting spherical, deformed and superdeformed states in a very narrow energy range At the very neutron rich or very proton rich edges, the T=0 and T=1 channels of the effective nuclear interaction weight very differently than they do at the stability line. Therefore the effective single particle structure may suffer important changes, leading in some cases to the vanishing of established shell closures or to the appearance of new ones

Fig. 40. Schematic view of the valence spaces at N = 8, 20, 40 and 70. The intruder configurations that develop quadrupole collectivity are highlighted.

Development of deformation at N=8,20,40,70

F. Nowacki, A. Obertelli and A. Poves

Progress in Particle and Nuclear Physics 120 (2021) 103866

Fig. 40. Schematic view of the valence spaces at N = 8, 20, 40 and 70. The intruder configurations that develop quadrupole collectivity are highlighted.

Development of deformation at N=14,28,50,82

F. Nowacki, A. Obertelli and A. Poves

Progress in Particle and Nuclear Physics 120 (2021) 103866

Fig. 41. Schematic view of the valence spaces at N = 14, 28, 50 and 82. The intruder configurations that develop quadrupole collectivity are highlighted.

The nuclear interaction: the complex view

P. Klee, art

The nuclear interaction: the simple view

J. Miro, art

Separation of the effective Hamiltonian Monopole and multipole

From the work of M. Dufour and A. Zuker (PRC 54 1996 1641) Separation theorem:

Any effective interaction can be split in two parts:

 $H = H_{monopole} + H_{multipole}$

Hmonopole: spherical mean-field

responsible for the global saturation properties and for the evolution of the spherical single particle levels.

H_{multipole}: correlator

pairing, quadrupole, octupole...

Important property:

 $\langle CS \pm 1 | H | CS \pm 1 \rangle = \langle CS \pm 1 | H_{monopole} | CS \pm 1 \rangle$

 $H_{multipole}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- L = 0 isovector and isoscalar pairing
- Elliott's quadrupole
- $\bullet \ \vec{\sigma}\vec{\tau}\cdot\vec{\sigma}\vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

	pp(JT)			$ph(\lambda au)$			
	10	01	21	20	40	10	11
KB USD-A CCEI NN+NNN-MBPT NN-MBPT	-5.83 -5.62 -6.79 -6.40 -6.06	-4.96 -5.50 -4.68 -4.36 -4.38	-3.21 -3.17 -2.93 -2.91 -2.92	-3.53 -3.24 -3.40 -3.28 -3.35	-1.38 -1.60 -1.39 -1.23 -1.31	+1.61 +1.56 +1.21 +1.10 +1.03	+3.00 +2.99 +2.83 +2.43 +2.49

 $H_{multipole}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- L = 0 isovector and isoscalar pairing
- Elliott's quadrupole
- $\bullet \ \vec{\sigma}\vec{\tau}\cdot\vec{\sigma}\vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

	pp(JT)			$ph(\lambda au)$			
	10	01	21	20	40	10	11
KB USD-A CCEI NN+NNN-MBPT NN-MBPT	-5.83 -5.62 -6.79 -6.40 -6.06	-4.96 -5.50 -4.68 -4.36 -4.38	-3.21 -3.17 -2.93 -2.91 -2.92	-3.53 -3.24 -3.40 -3.28 -3.35	-1.38 -1.60 -1.39 -1.23 -1.31	+1.61 +1.56 +1.21 +1.10 +1.03	+3.00 +2.99 +2.83 +2.43 +2.49

 $H_{multipole}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- L = 0 isovector and isoscalar pairing
- Elliott's quadrupole
- $\bullet \ \vec{\sigma}\vec{\tau}\cdot\vec{\sigma}\vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

		pp(J1)			ph	(λau)	
	10	01	21	20	40	10	11
KB USD-A CCEI NN+NNN-MBPT NN-MBPT	-5.83 -5.62 -6.79 -6.40 -6.06	-4.96 -5.50 -4.68 -4.36 -4.38	3.21 3.17 2.93 2.91 2.92	-3.53 -3.24 -3.40 -3.28 -3.35	-1.38 -1.60 -1.39 -1.23 -1.31	+1.61 +1.56 +1.21 +1.10 +1.03	+3.00 +2.99 +2.83 +2.43 +2.49

 $H_{multipole}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- L = 0 isovector and isoscalar pairing
- Elliott's quadrupole
- $\bullet \ \vec{\sigma}\vec{\tau}\cdot\vec{\sigma}\vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

	10	pp(JT) 01	21	20	ph 40	(λτ) 10	11
KB	-5.83	-4.96	-3.21	-3.53	-1.38	+1.61	+3.00
USD-A	-5.62	-5.50	-3.17	-3.24	-1.60	+1.56	+2.99
CCEI	-6.79	-4.68	-2.93	-3.40	-1.39	+1.21	+2.83
NN+NNN-MBPT	-6.40	-4.36	-2.91	-3.28	-1.23	+1.10	+2.43
NN-MBPT	-6.06	-4.38	-2.92	-3.35	-1.31	+1.03	+2.49

Landscape of medium mass nuclei

In the valence space of two major shells

EFFECTIVE INTERACTION: SDPF-U-MIX (update 2020)

Island of Inversion: Trends

Spin-Tensor decomposition shows it is mainly a Central and Tensor effect

Islands Of Inversion: Trends

Further away from Stability

- At the neutron drip line, the ESPE's of ²⁸O are completely at variance with those of ⁴⁰Ca at the stability valley. The change from the standard ESPE's of ¹⁶O to the anomalous ones in ²⁸O is totally due to the interactions of *sd* shell neutrons among themselves
- Notice that the *sd* shell orbits remain always below th *pf* shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}} - 0 p_{\frac{1}{2}}$ orbitals DO get inverted
- The monopole part of the neutron-proton interaction restores the N=20 shell gap when the valley of stability is approached
- Shell Evolution favors natural geometry for low-lying M1 excitations

$$\begin{array}{ccc} \nu 1 s_{\frac{1}{2}} & \nu 1 p_{\frac{3}{2}} \\ \nu 0 d_{\frac{3}{2}} & \otimes & \nu 1 p_{\frac{1}{2}} \end{array}$$

Island of Inversion: Trends

- At the neutron drip line, the ESPE's of ²⁸O are completely at variance with those of ⁴⁰Ca at the stability valley. The change from the standard ESPE's of ¹⁶O to the anomalous ones in ²⁸O is totally due to the interactions of *sd* shell neutrons among themselves
- Notice that the *sd* shell orbits remain always below th *pf* shell with the $\nu 0f_{\frac{2}{2}}$ and $\nu 0p_{\frac{3}{2}} 0p_{\frac{1}{2}}$ orbitals DO get inverted
- The monopole part of the neutron-proton interaction restores the N=20 shell gap when the valley of stability is approached
- Spin-Tensor decomposition shows it is mainly a Central and Tensor effect

Inverse shape coexistence Shell closure in ³²Mg

Merging of IOIs at N=20 and N=28

RAPID COMMUNICATIONS

PHYSICAL REVIEW C 85, 011302(R) (2012)

Low-lying neutron fp-shell intruder states in 27Ne

S. M. Brown,¹ W. N. Catford,¹ J. S. Thomas,¹ B. Fernández-Domínguez,²⁺ N. A. Ort,² M. Labiche,⁴ M. Rejmund,³ N. L. Achouri,² H. Al Falou,² N. I. Ashwood,¹ D. Beaunel,¹ Y. Blumenfold,² B. A. Brown,⁸ R. Chapman,⁴ M. Chartier,¹ N. Curtis,⁶ G. de France,² N. de Sereville,² F. Delanay,² A. Drouart,¹⁰ C. Force,² S. Franchoo,⁷ J. Guillot,² H Baigh,⁶ F. Hammache,⁷ V. Lapoux,⁹ R. C. Lemmon,⁷ A. Leprince,² F. Marcchal,⁷ X. Mougott,¹⁰ B. Mouginot,²¹ J. Kulpas,¹⁰ A. Naris, ¹⁰ N. Petters,¹⁰ C. Collacco,²⁰ A. Rams, ¹ J. Ascarting,¹¹ L. Stefan,¹¹ and G. L. Wilson¹

LOW-LYING NEUTRON fp-SHELL INTRUDER STATES

TABLE I. Comparison between experimental and calculated (see text) excitation energies and spectroscopic factors for states in ²⁷Ne. Experimental excitation energies are from [10] except for the 1.74-MeV state (present work). For C^2S , the errors include uncertainties from the reaction model.

J^{π}	E_{exp}^*	E^*_{WBP-M}	C^2S					
	(MeV)	(MeV)	Ref. [10]	Present	WBP-M			
3/2+	0	0	0.2(2)	0.42(22)	0.63			
3/2-	0.765	0.809	0.6(2)	0.64(33)	0.67			
$1/2^{+}$	0.885	0.869	0.3(1)	0.17(14)	0.17			
7/2-	1.74	1.686	- 1	0.35(10)	0.40			

At the neutron drip line, the ESPE's of ²⁸O are completely at variance with those of ⁴⁰Ca at the stability valley. The change from the standard ESPE's of ¹⁶O to the anomalous ones in ²⁸O is totally due to the interactions of *sd* shell neutrons among themselves

Notice that the *sd* shell orbits remain always below th *pf* shell with the $\nu 0f_{\frac{7}{2}}$ and $\nu 0p_{\frac{3}{2}} - 0p_{\frac{1}{2}}$ orbitals DO get inverted

 The monopole part of the neutron-proton interaction restores the N=20 shell gap when the valley of stability is approached

Evidence for shell inversion towards ²⁸O

PHYSICAL REVIEW LETTERS 124, 152502 (2020)

- At the neutron drip line, the ESPE's of ²⁸O are completely at variance with those of ⁴⁰Ca at the stability valley.
- Notice that the *sd* shell orbits remain always below th *pf* shell with the $\nu 0f_{\frac{7}{2}}$ and $\nu 0p_{\frac{3}{2}} - 0p_{\frac{1}{2}}$ orbitals DO get inverted
- Recent evidence for intruder states in ²⁸F low-lying spectrum
- In addition, extraction of 80% of "l=1" content in the GS

At the neutron drip line, the ESPE's of ²⁸O are completely at variance with those of ⁴⁰Ca at the stability valley. The change from the standard ESPE's of ¹⁶O to the anomalous ones in ²⁸O is totally due to the interactions of *sd* shell neutrons among themselves

• Notice that the *sd* shell orbits remain always below th *pf* shell with the $\nu 0f_{\frac{1}{2}}$ and $\nu 0p_{\frac{3}{2}} - 0p_{\frac{1}{2}}$ orbitals DO get inverted

- The monopole part of the neutron-proton interaction restores the N=20 shell gap when the valley of stability is approached
- New ³⁰F data from NeuLAND-SAMOURAI collaboration (J. Kahlbow phD work, submitted)
- ³⁸P separation energy + $p_{3/2}$ - $f_{7/2}$ splitting matches Fluorine chain S_n trend

Landscape of medium mass nuclei

Island of inversion at N=40, an old story: 1996

The Physics around the doubly-magic ⁷⁸Ni Nucleus

A. Poves

ў(0ph-2ph) = 5.70 9(0ph-Yph) = 8.30

$Q = -9.0 \ b^2$ BEZ = 19.8 b^{y}	CS < 1% $W(dS_{2}) = 1.1$
$\frac{\mathcal{E}(Y^+)}{\mathcal{E}(z^+)} = 2.7$	$\begin{bmatrix} \underline{\mathcal{E}(Y^4)} \\ \overline{\mathcal{E}(Z^4)} = (3.2)(3.4) \end{bmatrix}$
	in The intender

A SITUATION THAT REMINDS WHAT IS KNOWN AT N=20 FFS.

More recent experimental information

RAPID COMMUNICATION

PHYSICAL REVIEW C 81, 051304(R) (2010)

Collectivity at N = 40 in neutron-rich ⁶⁴Cr

 A. Gade, ^{1,2} R. V. F. Janssens, ³ T. Baugher, ^{1,2} D. Bazin, ¹ B. A. Brown, ^{1,2} M. P. Carpenter, ³ C. J. Chiara, ^{3,4} A. N. Deacon, ⁵
 S. J. Freeman, ⁵ G. F. Grinyer, ¹ C. R. Hoffman, ³ B. P. Kay, ³ F. G. Kondev, ⁶ T. Lauritsen, ³ S. McDaniel, ^{1,2} K. Meierbachtol, ^{1,7} A. Ratkiewicz, ^{1,2} S. R. Stroberg, ^{1,2} K. A. Walsh, ^{1,2} D. Weisshaar, ¹ R. Winkler, ¹ and S. Zhu³
 ¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
 ²Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

RAPID COMMUNICATION

PHYSICAL REVIEW C 81, 061301(R) (2010)

Onset of collectivity in neutron-rich Fe isotopes: Toward a new island of inversion?

J. Ljungvall,^{1,2,3} A. Görgen,¹ A. Obertelli,¹ W. Korten,¹ E. Clément,² G. de France,² A. Bürger,⁴ J.-P. Delaroche,⁵ A. Dewald,⁶ A. Gadea,⁷ L. Gaudefroy,⁵ M. Girod,⁵ M. Hackstein,⁶ J. Libert,⁸ D. Mengoni,⁹ F. Nowacki,¹⁰ T. Pissulla,⁶ A. Poves,¹¹ F. Recchia,¹² M. Rejmund,² W. Rother,⁶ E. Sahin,¹² C. Schmitt,² A. Shrivastava,² K. Sieja,¹⁰ J. J. Valiente-Dobón,¹² K. O. Zell,⁶ and M. Zielińska¹³ ¹CEA Saclay, IRFU, Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France ²GANIL, CEA/DSM-CNRSIN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen, France

3 CONCH CONCERNMENT FOLIAS OF

SM framework

Island of inversion around ⁶⁴Cr

- S. Lenzi, F. Nowacki, A. Poves and K. Sieja
- Phys. Rev. C82, 054301, 2010

LNPS interaction:

- based on realistic TBME
- new fit of the pf shell (KB3GR, E. Caurier)
- monopole corrections
- g_{9/2}-d_{5/2} gap now constrained to 2.5 Mev in ⁶⁸Ni

Calculations:

- Up to 14ħω excitations across Z=28 and N=40 gaps
- Matrix diagonalizations up to 2.10¹⁰
- m-scheme code ANTOINE (non public parallel version)

Triple coexistence in ⁶⁸Ni

- at first approximation, ⁶⁸Ni has a double closed shell structure for GS
- But low lying structure much more complex
- three coexisting 0⁺ states appear between 0 and \sim 2.5 MeV
- new location of 0⁺₂ state ! Configuration mixing and relative transition rates between low-spin states in ⁶⁸Ni: F. Recchia et al. Phys. Rev. C88, 041302(R) (2013)
- prediction of very low-lying superdeformed band ($\beta_2 \sim 0.4$) of 6p6h nature! •S. Lenzi et al. Phys. Rev. C82, 054301 (2010) •A. Dijon et al. Phys. Rev. C85, 0311301(R) (2012)

Shape transition at N=40

⁶⁸ Ni	0.98	0.10	0p0h(51%)
⁶⁶ Fe	3.17	0.46	4p4h(26%)
⁶⁴ Cr	3.41	0.76	6p6h(23%)
⁶² Ti	3.17	1.09	4p4h(48%)

Shape transition at N=40

	,	,	
⁶⁸ Ni	0.98	0.10	0p0h(51%)
⁶⁶ Fe	3.17	0.46	4p4h(26%)
⁶⁴ Cr	3.41	0.76	6p6h(23%)
⁶² Ti	3.17	1.09	4p4h(48%)

Shape transition at N=40

Neutron effective single particle energies

- reduction of the v f_{5/2}-g_{9/2} gap with removing f_{7/2} protons
- proximity of the quasi-SU3 partner d_{5/2}
- inversion of d_{5/2} and g_{9/2} orbitals same ordering as CC calculations

- reduction of the $\nu d_{3/2} f_{7/2}$ gap with removing $d_{5/2}$ protons
- proximity of the quasi-SU3 partner *p*_{3/2}
- inversion of $p_{3/2}$ and $f_{7/2}$ orbitals

Neutron effective single particle energies

same ordering as CC calculations

- Evolution of Z=28 from N=40 to N=50
- Evolution of N=50 from Z=40 to Z=28

- H.O. sd-pf: ⁴²Si deformed
 - pf-sdg: 78Ni ???
 - sdg-phf: ¹³²Sn doubly magic

- Evolution of Z=14 from N=20 to N=28
- Evolution of Z=28 from N=40 to N=50
- Evolution of N=50 from Z=40 to Z=28

- H.O. sd-pf: ⁴²Si deformed
 - pf-sdg: ⁷⁸Ni ???
 - sdg-phf: ¹³²Sn doubly magic

- Evolution of Z=14 from N=20 to N=28
- Evolution of Z=28 from N=40 to N=50
- Evolution of N=50 from Z=40 to Z=28

• o. • sd-pf: ⁴²Si deformed

• ⁷⁸Ni ???

pf-sdg: sdg-phf:
 ¹³²Sn doubly magic

- Evolution of Z=14 from N=20 to N=28
- Evolution of Z=28 from N=40 to N=50
- Evolution of N=50 from Z=40 to Z=28

Physics around ⁷⁸Ni

PFSDG-U interaction:

- realistic TBME
- pf shell for protons and gds shell for neutrons
- monopole corrections (3N forces)
- sdg● proton and neutrons gap ⁷⁸Ni fixed to phenomenological derived values

Calculations:

- excitations across Z=28 and N=50 gaps
- up to 5*10¹⁰ Slater Determinant basis states
- up to 3*10¹³ non-zero terms in the matrix!
- m-scheme code ANTOINE (non public version)
- J-scheme code NATHAN (parallelized version): 0.5*10⁹ J basis states

Physics around ⁷⁸Ni

PFSDG-U interaction:

- realistic TBME
- pf shell for protons and gds shell for neutrons
- monopole corrections (3N forces)
- sdg● proton and neutrons gap ⁷⁸Ni fixed to phenomenological derived values

Calculations:

- excitations across Z=28 and N=50 gaps
- up to 5*10¹⁰ Slater Determinant basis states
- up to 3*10¹³ non-zero terms in the matrix!
- m-scheme code ANTOINE (non public version)
- J-scheme code NATHAN (parallelized version): 0.5*10⁹ J basis states

- At first approximation, ⁷⁸Ni has a double closed shell structure for GS
- But very low-lying competing structures
- From the diagonalization, the first excited states in ⁷⁸Ni are :
 0⁺₂-2⁺₁ predicted at 2.6-2.9 MeV and to be deformed intruders of a **rotationnal band** !!!
- "1p1h" 2⁺₂ predicted at ~ 3.1 MeV
- Necessity to go beyond (fpg g d 5/2) LNPS space and beyond ab-initio description
- Portal to a new Island of Inversion

(Duy Duc Dao, DNO-SM calc.,

Strasbourg)

- At first approximation, ⁷⁸Ni has a double closed shell structure for GS
- But very low-lying competing structures
- From the diagonalization, the first excited states in ⁷⁸Ni are :
 0⁺₂-2⁺₁ predicted at 2.6-2.9 MeV and to be deformed intruders of a **rotationnal band** !!!
- "1p1h" 2⁺₂ predicted at ~ 3.1 MeV
- Necessity to go beyond (fpg g d 2 d 2) LNPS space and beyond ab-initio description
- Portal to a new Island of Inversion F. Nowacki et al., PRL 177, 272501 (2016)

- At first approximation, ⁷⁸Ni has a double closed shell structure for GS
- But very low-lying competing structures
- From the diagonalization, the first excited states in ⁷⁸Ni are :
 0⁺₂-2⁺₁ predicted at 2.6-2.9 MeV and to be deformed intruders of a **rotationnal band** !!!
- "1p1h" 2⁺₂ predicted at ~ 3.1 MeV
- Necessity to go beyond (fpg g d 2 d 2) LNPS space and beyond ab-initio description
- Portal to a new Island of Inversion F. Nowacki et al., PRL 177, 272501 (2016)

- At first approximation, ⁷⁸Ni has a double closed shell structure for GS
- But very low-lying competing structures
- From the diagonalization, the first excited states in ⁷⁸Ni are :
 0⁺₂-2⁺₁ predicted at 2.6-2.9 MeV and to be deformed intruders of a **rotationnal band** !!!
- "1p1h" 2⁺₂ predicted at ~ 3.1 MeV
- Necessity to go beyond (fpg g d 2 d 2) LNPS space and beyond ab-initio description
- Portal to a new Island of Inversion F. Nowacki et al., PRL 177, 272501 (2016)

F. Nowacki et al., PRL **177**, 272501 (2016)

• At first approximation, ⁷⁸Ni has a double

ARTICLE

https://doi.org/10.1038/s41586-019-1155-x

⁷⁸Ni revealed as a doubly magic stronghold against nuclear deformation

R. Taniuchi^{1,2}, C. Santamaria^{2,4}, P. Doornenbal^{2,*}, A. Obertelli^{2,3,4}, K. Yoneda², G. Autheler³, H. Baba², D. Calver³, F. Chåteau³, A. Corsi³, A. Dellart³, J.-M. Gheller³, A. Gillibert³, J. D. Holt⁵, T. Isobe², V. Lapoux³, M. Matsushita⁶, J. Menfedz⁶, S. Momiyama^{1,4}, T. Motobayashi⁴, M. Nikura¹, F. Nowacki⁷, K. Ogata^{6,9}, H. Otsu², T. Otsuka^{1,5,4}, C. Perron³, S. Pérru¹⁰, A. Peyaud³, E. C. Pollacco³, A. Poves¹¹, J. Y. Rousse³, H. Sakurai^{1,4}, A. Schwenk^{1,4,1,2,1}, Y. Shiga^{2,4,1}, J. Simoni^{5,1,2,1,5}, S. Rstrocher²⁵, S. Takeuch^{1,7}, Y. Tsunda⁴, T. Uesaka², H. Wang², F. Browne¹⁷, J. X. Chung¹⁸, Z. Dombrad¹⁹, S. Franchoo³⁰, F. Giacoppo²¹, A. Gottardo²⁰, K. Hadyńska-Klęk^{2,4}, Z. Korkulu¹⁹, S. Koyama^{1,4}, Y. Kubota^{2,6}, J. Lee^{2,4}, M. Lettmann⁴, C. Louchart⁴, R. Lozev^{2,7,2}, K. Masul^{2,4,7}, S. Suntika^{1,5,5}, D. Suzekli^{2,5,6}, D. Suzekli^{2,5,7}, D. Suzekl^{1,2,5}, D. Stefan³⁰, D. Stepenbeck⁶, T. Sumika^{1,5,6}, D. Suzekl^{1,5,7}, Z. Wajta¹⁰, Y. Werner⁴, J. K. W^{2,5,8}, C. Shand⁴⁴, P. A. Söderströn², R. Stefan³⁰, D. Stepenbeck^{1,5}, S. Suntika^{1,5,6}, D. Suzekl^{1,5,7}, D. Suzekl^{1,5,7}, S. Usekl^{5,7}, W. Werner⁴, J. Ku^{2,5,8}, K. Xu²

R. Taniuchi et al., NATURE 569, 53-58 (2019)

F. Nowacki et al., PRL **177**, 272501 (2016)

Island of Inversion Mergers

Island of Inversion Mergers

The N=40 and N=50 Iol's merge like the N=20 and N=28 Iol's did

Landscape of medium mass nuclei

\diamond Strongly deformed states at N = Z:

- Configuration mixing in ⁷²Kr
- Most deformed cases for ⁷⁶Sr, ⁸⁰Zr
- Shape transition between ⁸⁴Mo and ⁸⁶Mo NSCL/GRETINA Experiment

R.D.O. Llewellyn et al., Phys. Rev. Lett. 124, 152501 (2020)

FIG. 3. Schematics of the $B(E2\downarrow)$ values for the N = Z nuclei

\diamond Strongly deformed states at N=Z

- Configuration mixing in ⁷²Kr
- Most deformed cases for ⁷⁶Sr, ⁸⁰Zr
- Shape transition between ⁸⁴Mo and ⁸⁶Mo NSCL/GRETINA Experiment

			B(E2	?)(e ² .fm ⁴)	
nucleus	NpNh*	ZRP	PHF	DNO-SM	Exp.
⁷⁶ Se	4p-4h 8p-8h 12p-12h	924 2189 2316	806 2101 -	1847	2220
⁸⁰ Zr	4p-4h 8p-8h 12p-12h	587 1713 2663	637 1509 2396	2325	1910

\diamond Strongly deformed states at N = Z

- Configuration mixing in ⁷²Kr
- Most deformed cases for ⁷⁶Sr, ⁸⁰Zr
- Shape transition between ⁸⁴Mo and ⁸⁶Mo NSCL/GRETINA Experiment

				B(E2)(e ² .fm ⁴)	
nucleus	Np-Nh*	ZRP	PHF	DNO-SM*	SM	Exp.
⁸⁴ Mo	4p-4h 8p-8h	1104 1891	1193 1732	1765	-	1740^{+580}_{-730}
⁸⁶ Mo	0p-0h 2p-2h 4p-4h 6p-6h	542 1030 1416 1858	196 871 1179 1655	1184	731	707(71)

\diamond Strongly deformed states at N = Z

- Configuration mixing in ⁷²Kr
- Most deformed cases for ⁷⁶Sr, ⁸⁰Zr
- Shape transition between ⁸⁴Mo and ⁸⁶Mo NSCL/GRETINA Experiment

\diamond Strongly deformed states at N = Z

- Configuration mixing in ⁷²Kr
- Most deformed cases for ⁷⁶Sr, ⁸⁰Zr
- Shape transition between ⁸⁴Mo and ⁸⁶Mo NSCL/GRETINA Experiment

	B(E2)(e ² .fm ⁴	1	
		,	
PHF	DNO-SM*	SM	Exp.
1193 1732	1765	-	1740^{+580}_{-730}
196 871 1179 1655	1184	731	707(71)
	PHF 1193 1732 196 871 1179 1655	PHF DNO-SM* 1193 1765 1732 1765 196 871 871 1184 1179 1655	PHF DNO-SM* SM 1193 1765 - 1732 1765 - 196 871 1184 731 1179 1655 - -

Summary

- Monopole drift develops in all regions but the Interplay between correlations (pairing + quadrupole) and spherical mean-field (monopole field) determines the physics. It can vary from :
 - island of deformation at N=20 and N=40
 - deformation at Z=14, N=28 for ^{42}Si and shell weakening at Z=28, N=50 for ^{78}Ni
- The "islands of inversion" appear due to the effect of the correlations, hence they could also be called "islands of enhanced collectivity". As quadrupole correlations are dominant in this region, most of thei inhabitants are deformed rotors. Shape transitions and coexistence show up everywhere
- Quadrupole energies can be huge and understood in terms of symmetries

- even at the drip in fluorine isotopes, bound approximation holds
- strong superfluid regime with pair scattering from sd to pf shells
- odd-even Sn energies staggering does not seem to originate from continuum coupling

Special thanks to:

- D. D. Dao, G. Martinez-Pinedo, A. Poves, S. Lenzi, K. Sieja
- A. Gade, O. Sorlin, A. Obertelli
- J. Herzfeld-Nowacki