Collective phenomena and shell structure far from stability

Frédéric Nowacki ${ }^{1}$

Theory Alliance
FACILITY FOR RARE ISOTOPE BEAMS
FRIB-TA Topical Program:
Theoretical Justifications and
Motivations for Early High-Profile
FRIB Experiments

16-26 mai 2023
Facility for Rare Isotope Beams
unvensirte postrensoounc
${ }^{1}$ Strasbourg-Madrid Shell-Model collaboration

What are the data needed to constrain and refine models ?

THE DRAMA:

What are the data needed to constrain and refine models ?

THE DRAMA:

- Theorists here in the room :
"None! We don't need any!"

What are the data needed to constrain and refine models?

THE DRAMA:

- Theorists here in the room :
"None! We don't need any!"
- Experimentalists here in the room :
"All of them! Let's measure all of them!"

What are the data needed to constrain and refine models ?

THE DRAMA:

- Theorists here in the room :
"None! We don't need any!"
- Experimentalists here in the room :
"All of them! Let's measure all of them!"

Fortunately, life has made us more reasonable ... and things more simple!

Shell Model: Physics Goals

Collective excitations:

- Deformation, Superdeformation,

Dipole/M1 resonances

- Superfluidity
- Symmetries

$\vartheta 1$
- define Effective Interaction
- $\mathcal{H}_{\text {eff }} \Psi_{\text {eff }}=E \Psi_{\text {eff }}$
- build and diagonalize Energy matrix

Weak processes:

- β decay
- $\beta \beta$ decay

$$
\left[T_{1 / 2}^{0 \nu}\left(0^{+} \rightarrow 0^{+}\right)\right]^{-1}=G_{0 \nu}\left|M^{0 \nu}\right|^{2}\left\langle m_{\nu}\right\rangle^{2}
$$

Shell evolution far from stability:

- Vanishing of shell closures
- New magic numbers

Ab Initio calculations:

- Chiral EFT realistic interactions
- 3N forces

Shell Model: Giant Computations

- exponential growth of basis dimensions:

$$
D \sim\binom{d_{\pi}}{p} \cdot\binom{d_{\nu}}{n}
$$

In pf shell :
${ }^{48} \mathrm{Cr} \quad 1,963,461$
${ }^{56} \mathrm{Ni} \quad 1,087,455,228$
In $p f$-sdg space :

$$
{ }^{78} \mathrm{Ni} \quad 210,046,691,518
$$

- Actual limits in limits in giant diagonalizations: 0.210^{12} for ${ }^{114} \mathrm{Sn}$ core excitations
- Some of the largest diagonalizations ever are performed in Strasbourg with relatively modest computationnal ressources:
Phys. Rev. C82 (2010) 054301, ibidem 064304
- m scheme ANTOINE code
- coupled scheme NATHAN code

Discrete Non-Orthogonal Shell Model
Generator Coordinate Method: $\left|\Psi_{\text {eff }}\right\rangle=\sum_{i} f_{i}\left|\Phi_{i}\right\rangle$

1) Deformed Hartree-Fock (HF) Slater determinants
2) Restoration of rotational symmetry
3) Mixing of shapes:

$$
\left|\Psi_{\mathrm{eff}}\right\rangle=\circlearrowright+\bigcirc+\square
$$

Basis Truncation Method

? choice of relevant deformed Hartree-Fock states

- E. Caurier's Minimization Technique:
(E. Caurier, Proc. on GCM, BLG report 484 (1975))

\diamond Based on the variational principle
\diamond Minimization of the energy of given

```
                        states {J }\mp@subsup{J}{}{\pi}
```

- Iterative procedure:

Generator Coordinate Method: $\left|\Psi_{\text {eff }}\right\rangle=\sum_{i} f_{i}\left|\Phi_{i}\right\rangle$

1) Deformed Hartree-Fock (HF) Slater determinants
2) Restoration of rotational symmetry
3) Mixing of shapes:

Intrinsic/Laboratory Description

- Deformation structure of nuclear states: $\left\{J_{\alpha}^{\pi}\right\}, q=(\beta, \gamma)$

$$
M_{\alpha}^{(J)}(q, K)=\sum_{q^{\prime}, K^{\prime}}\left[\hat{N}^{1 / 2}\right]_{K^{\prime} K}^{(J)}\left(q^{\prime}, q\right) f_{\alpha}^{(J)}\left(q^{\prime}, K^{\prime}\right)
$$

\diamond Probability of a configuration (β, γ) :

$$
P_{\alpha}^{(J)}(q)=\sum_{K}\left|M_{\alpha}^{(J)}(q, K)\right|^{2}
$$

- particle-hole interpretation:
- K-quantum numbers:

$$
P_{\alpha}^{(J)}(K)=\sum_{q}\left|M_{\alpha}^{(J)}(q, K)\right|^{2}
$$

M-scheme

Discrete Non-Orthogonal Shell Model

Nuclear structure within a discrete nonorthogonal shell model approach: New frontiers
D. D. Dao ${ }^{\circ}$ and F. Nowacki

Université de Strasbourg, CNRS, IPHC UMR7178, 23 rue du Loess, F-67000 Strasbourg, France
(6) (Received 8 March 2022; accepted 6 May 2022; published 23 May 2022)

First "SM" calculations for superheavies !!!

- New gaps: ${ }^{24} \mathrm{O},{ }^{48} \mathrm{Ni},{ }^{54} \mathrm{Ca},{ }^{78} \mathrm{Ni},{ }^{100} \mathrm{Sn}$
- Vanishing of shell closure: ${ }^{12} \mathrm{Be},{ }^{32} \mathrm{Mg},{ }^{42} \mathrm{Si},{ }^{64} \mathrm{Cr},{ }^{80} \mathrm{Zr}$...
- Island of deformation around $\mathrm{A} \sim 32$, $\mathrm{A} \sim 64$
- Low-lying dipole excitations in Ne , Ni isotopes
- Variety of phenomena dictated by shell structure
- Close connection between collective behaviour and underlying shell structure
- Interplay between
- Monopole field (spherical mean field)
- Multipole correlations (pairing, Q.Q, ...)
"Pairing plus Quadrupole propose, Monopole disposes"
A. Zuker, Coherent and Random Hamiltonians, CRN Preprint 1994

Development of deformation at $\mathrm{N}=8,20,40,70$

- Magic numbers are associated to enegy gaps in the spherical mean field. Therefore, to promote particles above the Fermi levels costs energy
- However some intruders configurations can overwhelm their loss of monopole energy with their huge gain in correlation energy
- Several examples of this phenomenon exist in stable magic nuclei (as in ${ }^{40} \mathrm{Ca}$ nucleus) in the form of coexisting spherical, deformed and superdeformed states in a very narrow energy range
- At the very neutron rich or very proton rich edges, the $\mathrm{T}=0$ and $\mathrm{T}=1$ channels of the effective nuclear interaction weight very differently than they do at the stability line. Therefore the effective single particle structure may suffer important changes, leading in some cases to the vanishing of established shell closures or to the appearance of new ones

Fig. 40. Schematic view of the valence spaces at $\mathrm{N}=8,20,40$ and 70 . The intruder configurations that develop quadrupole collectivity are highlighted.

Fig. 40. Schematic view of the valence spaces at $\mathrm{N}=8,20,40$ and 70 . The intruder configurations that develop quadrupole collectivity are highlighted.

Development of deformation at $N=14,28,50,82$

F. Nowacki, A. Obertelli and A. Poves

H.O. $\mathrm{N}=3$

Fig. 41. Schematic view of the valence spaces at $N=14,28,50$ and 82 . The intruder configurations that develop quadrupole collectivity are highlighted.

E. Epelbaum, physics

The nuclear interaction: the simple view

From the work of M. Dufour and A. Zuker (PRC 541996 1641) Separation theorem:

Any effective interaction can be split in two parts:

$$
H=H_{\text {monopole }}+H_{\text {multipole }}
$$

$H_{\text {monopole }}$: spherical mean-field
responsible for the global saturation properties and for the evolution of the spherical single particle levels.
$H_{\text {multipole }}$: correlator
pairing, quadrupole, octupole...
Important property:

$$
\langle C S \pm 1| H|C S \pm 1\rangle=\langle C S \pm 1| H_{\text {monopole }}|C S \pm 1\rangle
$$

$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (all the realistic interactions give similar values) and scale simply with the mass number

	$\mathrm{pp}(\mathrm{JT})$			$\operatorname{ph}(\lambda \tau)$			
	10	01	21	20	40	10	11
KB	-5.83	-4.96	-3.21	-3.53	-1.38	+1.61	+3.00
USD-A	-5.62	-5.50	-3.17	-3.24	-1.60	+1.56	+2.99
CCEI	-6.79	-4.68	-2.93	-3.40	-1.39	+1.21	+2.83
NN+NNN-MBPT	-6.40	-4.36	-2.91	-3.28	-1.23	+1.10	+2.43
NN-MBPT	-6.06	-4.38	-2.92	-3.35	-1.31	+1.03	+2.49

$H_{\text {multipole }}$ can be written in two representations, particle-particle and pe When cohere ground state $=$ pairs of like-particles coupled at $\mathrm{J}=0$ (seniority $\mathrm{v}=0$) 2^{+}state (break of pair; $v=2$) at high energy

- $L=$
- Ell
- $\vec{\sigma} \vec{\tau}$
- Oc superfluid nucleus:

Besid ϵ similar

Typical example: Tin isotopes

- Quadrupole regime: deformed nuclei

KB
US[prolate nucleus:
CCE
NN_{+}
NN-
Typical example: open shell $\mathrm{N}=\mathrm{Z}$ nuclei

-
$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (all the realistic interactions give similar values) and scale simply with the mass number

	$\operatorname{pp}(\mathrm{JT})$				$\operatorname{ph}(\lambda \tau)$				
	10	01	21	20	40	10	11		
KB	-5.83	-4.96	-3.21	-3.53	-1.38	+1.61	+3.00		
USD-A	-5.62	-5.50	-3.17	-3.24	-1.60	+1.56	+2.99		
CCEI	-6.79	-4.68	-2.93	-3.40	-1.39	+1.21	+2.83		
NN+NNN-MBPT	-6.40	-4.36	-2.91	-3.28	-1.23	+1.10	+2.43		
NN-MBPT	-6.06	-4.38	-2.92	-3.35	-1.31	+1.03	+2.49		

$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (all the realistic interactions give similar values) and scale simply with the mass number

$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (all the realistic interactions give similar values) and scale simply with the mass number

	$\operatorname{pp}(\mathrm{JT})$			$\operatorname{ph}(\lambda \tau)$			
	10	01	21	20	40	10	11
KB	-5.83	-4.96	-3.2	-3.53	-1.38	+1.61	+3.00
USD-A	-5.62	-5.50	-3.17	-3.24	-1.60	+1.56	+2.99
CCEI	-6.79	-4.68	-2.93	-3.40	-1.39	+1.21	+2.83
NN+NNN-MBPT	-6.40	-4.36	-2.9	-38	-1.23	+1.10	+2.43
NN-MBPT	-6.06	-4.38	-2.92	-3.35	-1.31	+1.03	+2.49

In the valence space of two major shells

EFFECTIVE INTERACTION: SDPF-U-MIX (update 2020)

- At the neutron drip line, the ESPE's of ${ }^{28} \mathrm{O}$ are completely at variance with those of ${ }^{40} \mathrm{Ca}$ at the stability valley. The change from the standard ESPE's of ${ }^{16} \mathrm{O}$ to the anomalous ones in ${ }^{28} \mathrm{O}$ is totally due to the interactions of $s d$ shell neutrons among themselves
- Notice that the sd shell orbits remain always below th pf shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}}-0 p_{\frac{1}{2}}$ orbitals DO get inverted
- The monopole part of the neutron-proton interaction restores the $\mathrm{N}=20$ shell gap when the valley of stability is approached
- Spin-Tensor decomposition shows it is mainly a Central and Tensor effect

- Spin-Tensor decomposition shows it is mainly a Central and Tensor effect

Further away from Stability

- At the neutron drip line, the ESPE's of ${ }^{28} \mathrm{O}$ are completely at variance with those of ${ }^{40} \mathrm{Ca}$ at the stability valley. The change from the standard ESPE's of ${ }^{16} \mathrm{O}$ to the anomalous ones in ${ }^{28} \mathrm{O}$ is totally due to the interactions of $s d$ shell neutrons among themselves
- Notice that the sd shell orbits remain always below th pf shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}}-0 p_{\frac{1}{2}}$ orbitals DO get inverted
- The monopole part of the neutron-proton interaction restores the $\mathrm{N}=20$ shell gap when the valley of stability is approached
- Shell Evolution favors natural geometry for low-lying M1 excitations

$$
\begin{aligned}
& \nu 1 s_{\frac{1}{2}} \\
& \nu 0 d_{\frac{3}{2}}
\end{aligned} \otimes \begin{aligned}
& \nu 1 p_{\frac{3}{2}} \\
& \nu 1 p_{\frac{1}{2}}
\end{aligned}
$$

- At the neutron drip line, the ESPE's of ${ }^{28} \mathrm{O}$ are completely at variance with those of ${ }^{40} \mathrm{Ca}$ at the stability valley. The change from the standard ESPE's of ${ }^{16} \mathrm{O}$ to the anomalous ones in ${ }^{28} \mathrm{O}$ is totally due to the interactions of $s d$ shell neutrons among themselves
- Notice that the sd shell orbits remain always below th pf shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}}-0 p_{\frac{1}{2}}$ orbitals DO get inverted
- The monopole part of the neutron-proton interaction restores the $\mathrm{N}=20$ shell gap when the valley of stability is approached
- Spin-Tensor decomposition shows it is mainly a Central and Tensor effect

A

At the drip line

RAPID COMMUNICATIONS

PHYSICAL REVIEW C 85, $011302(\mathrm{R})$ (2012)

Low-lying neutron fp-shell intruder states in ${ }^{27} \mathrm{Ne}$

S. M. Brown, ${ }^{1}$ W. N. Catford, ${ }^{1}$ J. S. Thomas, ${ }^{1}$ B. Fernández-Domínguez, ${ }^{2,3}$ N. A. Orr, ${ }^{2}$ M. Labiche, ${ }^{4}$ M. Rejmund, ${ }^{5}$ N. L. Achouri, ${ }^{2}$ H. Al Falou, ${ }^{2}$ N. I. Ashwood, ${ }^{6}$ D. Beaumel, ${ }^{7}{ }^{7}$ Y. Blumenfeld, ${ }^{7}$ B. A. Brown, ${ }^{8}$ R. Chapman, ${ }^{9}$ M. Chartier, ${ }^{3}$ N. Curtis, ${ }^{6}$ G. de France, ${ }^{5}$ N. de Sereville, ${ }^{7}$ F. Delaunay, ${ }^{2}$ A. Drouart, ${ }^{10}$ C. Force, ${ }^{5}$ S. Franchoo, ${ }^{7}$ J. Guillot, ${ }^{7}$ P. Haigh, ${ }^{6}$ F. Hammache, ${ }^{7}$ V. Lapoux, ${ }^{10}$ R. C. Lemmon,,${ }^{4}$ A. Leprince, ${ }^{2}$ F. Maréchal, ${ }^{7}$ X. Mougeot ${ }^{10}$ B. Mouginot, ${ }^{7}$ L. Nalpas, ${ }^{10}$ A. Navin, ${ }^{5}$ N. P. Patterson, ${ }^{1}$ B. Pietras, ${ }^{3}$ E. C. Pollacco, ${ }^{10}$ A. Ramus, ${ }^{7}$ J. A. Scarpaci, ${ }^{7}$ I. Stefan, ${ }^{7}$ and G. L. Wilson ${ }^{1}$

LOW-LYING NEUTRON $f p$-SHELL INTRUDER STATES . .

TABLE I. Comparison between experimental and calculated (see
text) excitation energies and spectroscopic factors for states in ${ }^{27} \mathrm{Ne}$. Experimental excitation energies are from [10] except for the 1.74Experimental excitation energies are from $[10]$ except for the $1.74-$
MeV state (present work). For $C^{2} S$, the errors include uncertainties from the reaction model.

J^{π}	$E_{\text {exp }}^{*}$	$E_{W B P-M}^{*}$		$C^{2} S$		
	(MeV)	(MeV)	Ref. [10]	Present	WBP-M	
$3 / 2^{+}$	0	0	$0.2(2)$	$0.42(22)$	0.63	
$3 / 2^{-}$	0.765	0.809	$0.6(2)$	$0.64(33)$	0.67	
$1 / 2^{+}$	0.885	0.869	$0.3(1)$	$0.17(14)$	0.17	
$7 / 2^{-}$	1.74	1.686	-	$0.35(10)$	0.40	

At the neutron drip line, the ESPE's of ${ }^{28} \mathrm{O}$ are completely at variance with those of ${ }^{40} \mathrm{Ca}$ at the stability valley. The change from the standard ESPE's of ${ }^{16} \mathrm{O}$ to the anomalous ones in ${ }^{28} \mathrm{O}$ is totally due to the interactions of $s d$ shell neutrons among themselves

- Notice that the sd shell orbits remain always below th pf shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}}-0 p_{\frac{1}{2}}$ orbitals DO get inverted
- The monopole part of the neutron-proton interaction restores the $\mathrm{N}=20$ shell gap when the valley of stability is approached
- Evidence for shell inversion towards ${ }^{28} \mathrm{O}$

Nowacki/Poves 2014

- At the neutron drip line, the ESPE's of ${ }^{28} \mathrm{O}$ are completely at variance with those of ${ }^{40} \mathrm{Ca}$ at the stability valley. The change from the standard ESPE's of ${ }^{16} \mathrm{O}$ to the anomalous ones in ${ }^{28} \mathrm{O}$ is totally due to the interactions of $s d$ shell neutrons among themselves
- Notice that the sd shell orbits remain always below th pf shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}}-0 p_{\frac{1}{2}}$ orbitals DO get inverted
- The monopole part of the neutron-proton interaction restores the $\mathrm{N}=20$ shell gap when the valley of stability is approached
- "ill" behaviour mainly due to ${ }^{38} \mathrm{P}$ separation energy

Extending the Southern Shore of the Island of Inversion to ${ }^{28} \mathrm{~F}$
A. Revel, ${ }^{1,2}$ O. Sorlin, ${ }^{1}$ F. M. Marquése, ${ }^{2}$ Y. Kondo, ${ }^{3}$ J. Kahlbow, ${ }^{4,5}$ T. Nakamura, ${ }^{3}$ N. A. Orr, ${ }^{2}$ F. Nowacki, ${ }^{6,7}$

- At the neutron drip line, the ESPE's of ${ }^{28} \mathrm{O}$ are completely at variance with those of ${ }^{40} \mathrm{Ca}$ at the stability valley.
- Notice that the sd shell orbits remain always below th pf shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}}-0 p_{\frac{1}{2}}$ orbitals DO get inverted
- Recent evidence for intruder states in ${ }^{28} \mathrm{~F}$ low-lying spectrum
- In addition, extraction of 80% of "l=1" content in the GS

Nowacki/Poves 2020

- At the neutron drip line, the ESPE's of ${ }^{28} \mathrm{O}$ are completely at variance with those of ${ }^{40} \mathrm{Ca}$ at the stability valley. The change from the standard ESPE's of ${ }^{16} \mathrm{O}$ to the anomalous ones in ${ }^{28} \mathrm{O}$ is totally due to the interactions of $s d$ shell neutrons among themselves
- Notice that the sd shell orbits remain always below th pf shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}}-0 p_{\frac{1}{2}}$ orbitals DO get inverted
- The monopole part of the neutron-proton interaction restores the $\mathrm{N}=20$ shell gap when the valley of stability is approached
- New ${ }^{30} \mathrm{~F}$ data from NeuLAND-SAMOURAI collaboration (J. Kahlbow phD work, submitted)
(- ${ }^{38} \mathrm{P}$ separation energy $+p_{3 / 2^{-}-f_{7 / 2}}$ splitting matches Fluorine chain S_{n} trend

Island of inversion at N=40, an old story: 1996
The Physics around the doubly-magic ${ }^{78} \mathrm{Ni}$ Nucleus
Leaven, Belgium
November 45, 1996
A. Poves
${ }^{64} \mathrm{Cr}$

$$
\begin{array}{cc}
& g(0 p h-2 p h)=5.70 \\
& g(0 p h-y p h)=8.30 \\
Q=-9.0 b^{2} & c s<1 \% \\
B E 2=19.8 b^{4} & u(d 5 / 2)=1.1 \\
\frac{E\left(y^{+}\right)}{E\left(z^{+}\right)}=2.7 & {\left[\frac{E\left(y^{+}\right)}{E\left(z^{+}\right)}=(3.2)(3.4)\right]}
\end{array}
$$

in the inturder configurations.
a situation that reminds what IS kNOWN AT $N=20$ IFS.

PHYSICAL REVIEW C 81, 051304(R) (2010)
Collectivity at $N=40$ in neutron-rich ${ }^{64} \mathrm{Cr}$
A. Gade, ${ }^{1,2}$ R. V. F. Janssens, ${ }^{3}$ T. Baugher, ${ }^{1,2}$ D. Bazin, ${ }^{1}$ B. A. Brown, ${ }^{1,2}$ M. P. Carpenter, ${ }^{3}$ C. J. Chiara, ${ }^{3,4}$ A. N. Deacon, ${ }^{5}$ S. J. Freeman, ${ }^{5}$ G. F. Grinyer, ${ }^{1}$ C. R. Hoffman, ${ }^{3}$ B. P. Kay, ${ }^{3}$ F. G. Kondev, ${ }^{6}$ T. Lauritsen, ${ }^{3}$ S. McDaniel, ${ }^{1,2}$ K. Meierbachtol, ${ }^{1,7}$ A. Ratkiewicz, ${ }^{1,2}$ S. R. Stroberg,,${ }^{1,2}$ K. A. Walsh, ${ }^{1,2}$ D. Weisshaar, ${ }^{1}$ R. Winkler, ${ }^{1}$ and S. Zhu ${ }^{3}$
${ }^{1}$ National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
${ }^{2}$ Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
${ }^{3}$ Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

Onset of collectivity in neutron-rich Fe isotopes: Toward a new island of inversion?

J. Ljungvall, ${ }^{1,2,3}$ A. Görgen, ${ }^{1}$ A. Obertelli, ${ }^{1}$ W. Korten, ${ }^{1}$ E. Clément, ${ }^{2}$ G. de France, ${ }^{2}$ A. Bürger,,${ }^{4}$ J.-P. Delaroche, ${ }^{5}$ A. Dewald, ${ }^{6}$
A. Gadea, ${ }^{7}$ L. Gaudefroy, ${ }^{5}$ M. Girod, ${ }^{5}$ M. Hackstein, ${ }^{6}$ J. Libert, ${ }^{8}$ D. Mengoni, ${ }^{9}$ F. Nowacki, ${ }^{10}$ T. Pissulla, ${ }^{6}$ A. Poves, ${ }^{11}$
F. Recchia, ${ }^{12}$ M. Rejmund, ${ }^{2}$ W. Rother, ${ }^{6}$ E. Sahin, ${ }^{12}$ C. Schmitt, ${ }^{2}$ A. Shrivastava, ${ }^{2}$ K. Sieja, ${ }^{10}$ J. J. Valiente-Dobón, ${ }^{12}$
K. O. Zell, ${ }^{6}$ and M. Zielińska ${ }^{13}$
${ }^{1}$ CEA Saclay, IRFU, Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France
${ }^{2}$ GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen, France

Island of inversion around ${ }^{64} \mathrm{Cr}$
S. Lenzi, F. Nowacki, A. Poves and K. Sieja

Phys. Rev. C82, 054301, 2010

- - - $\quad \mathrm{d} 5 / 2$
- - - $=19 / 2$

48

Ca

LNPS interaction:

- based on realistic TBME
- new fit of the pf shell (KB3GR, E. Caurier)
- monopole corrections
- $g_{9 / 2}-d_{5 / 2}$ gap now constrained to 2.5 Mev in ${ }^{68} \mathrm{Ni}$

Calculations:

- Up to $14 \hbar \omega$ excitations across $Z=28$ and $\mathrm{N}=40$ gaps
- Matrix diagonalizations up to 2.10^{10}
- m-scheme code ANTOINE (non public parallel version)
- at first approximation, ${ }^{68} \mathrm{Ni}$ has a double closed shell structure for GS
- But low lying structure much more complex
- three coexisting 0^{+}states appear between 0 and $\sim 2.5 \mathrm{MeV}$
- new location of O_{2}^{+}state !

Configuration mixing and relative transition rates between low-spin states in ${ }^{68} \mathrm{Ni}$:
F. Recchia et al.

Phys. Rev. C88, 041302(R) (2013)

- prediction of very low-lying
superdeformed band ($\beta_{2} \sim 0.4$) of
$6 p 6 h$ nature!
-S. Lenzi et al.
Phys. Rev. C82, 054301 (2010)
-A. Dijon et al.
Phys. Rev. C85, 0311301(R) (2012)
shell model

Shape transition at N=40

Nucleus	$\nu g_{9 / 2}$	$\nu d_{5 / 2}$	configuration
${ }^{68} \mathrm{Ni}$	0.98	0.10	Op0h(51\%)
${ }^{66} \mathrm{Fe}$	3.17	0.46	$4 \mathrm{p} 4 \mathrm{~h}(26 \%)$
${ }^{64} \mathrm{Cr}$	3.41	0.76	$6 p 6 \mathrm{~h}(23 \%)$
${ }^{62} \mathrm{Ti}$	3.17	1.09	$4 \mathrm{p} 4 \mathrm{~h}(48 \%)$

Shape transition at N=40

Nucleus	$\nu g_{9 / 2}$	$\nu d_{5 / 2}$	configuration
${ }^{68} \mathrm{Ni}$	0.98	0.10	Op0h(51\%)
${ }^{66} \mathrm{Fe}$	3.17	0.46	$4 \mathrm{p} 4 \mathrm{~h}(26 \%)$
${ }^{64} \mathrm{Cr}$	3.41	0.76	$6 p 6 \mathrm{~h}(23 \%)$
${ }^{62} \mathrm{Ti}$	3.17	1.09	$4 \mathrm{p} 4 \mathrm{~h}(48 \%)$

Shape transition at N=40

Nucleus	$\nu g_{9 / 2}$	$\nu d_{5 / 2}$	configuration
${ }^{68} \mathrm{Ni}$	0.98	0.10	Op0h(51\%)
${ }^{66} \mathrm{Fe}$	3.17	0.46	$4 \mathrm{p} 4 \mathrm{~h}(26 \%)$
${ }^{64} \mathrm{Cr}$	3.41	0.76	$6 p 6 \mathrm{~h}(23 \%)$
${ }^{62} \mathrm{Ti}$	3.17	1.09	$4 \mathrm{p} 4 \mathrm{~h}(48 \%)$

Neutron effective single particle energies

- reduction of the $\nu f_{5 / 2}-g_{9 / 2}$ gap with removing $f_{7 / 2}$ protons
- proximity of the quasi-SU3 partner $d_{5 / 2}$
- inversion of $d_{5 / 2}$ and $g_{9 / 2}$ orbitals same ordering as CC calculations
- reduction of the $\nu d_{3 / 2^{-}-f_{7 / 2}}$ gap with removing $d_{5 / 2}$ protons
- proximity of the quasi-SU3 partner $p_{3 / 2}$
- inversion of $p_{3 / 2}$ and $f_{7 / 2}$ orbitals

Neutron effective single particle energies

removing $f_{7 / 2}$ protons

- proximity of the quasi-SU3 partner $d_{5 / 2}$
- inversion of $d_{5 / 2}$ and $g_{9 / 2}$ orbitals same ordering as CC calculations
- reduction of the $\nu d_{3 / 2^{-}-f_{7 / 2}}$ gap with removing $d_{5 / 2}$ protons
- proximity of the quasi-SU3 partner $p_{3 / 2}$
- inversion of $p_{3 / 2}$ and $f_{7 / 2}$ orbitals

- Evolution of $Z=28$ from $N=40$ to $N=50$
- Evolution of $\mathrm{N}=50$ from $\mathrm{Z}=40$ to $\mathrm{Z}=28$

- Evolution of $Z=14$ from $N=20$ to $N=28$
- Evolution of $\mathrm{Z}=28$ from $\mathrm{N}=40$ to $\mathrm{N}=50$
- Evolution of $\mathrm{N}=50$ from $\mathrm{Z}=40$ to $\mathrm{Z}=28$

- Evolution of $Z=14$ from $N=20$ to $N=28$
- Evolution of $Z=28$ from $N=40$ to $N=50$
- Evolution of $\mathrm{N}=50$ from $\mathrm{Z}=40$ to $\mathrm{Z}=28$

- Evolution of $Z=14$ from $N=20$ to $N=28$
- Evolution of $\mathrm{Z}=28$ from $\mathrm{N}=40$ to $\mathrm{N}=50$
- Evolution of $\mathrm{N}=50$ from $\mathrm{Z}=40$ to $\mathrm{Z}=28$

PFSDG-U interaction:

- realistic TBME

${ }^{60} \mathrm{Ca}$

- pf shell for protons and gds shell for neutrons
- monopole corrections (3 N forces)
$\mathbf{s d g}$ - proton and neutrons gap ${ }^{78} \mathrm{Ni}$ fixed to phenomenological derived values

Calculations:

- excitations across $\mathrm{Z}=28$ and $\mathrm{N}=50$ gaps
- up to $5^{*} 10^{10}$ Slater Determinant basis states
- up to $3^{*} 10^{13}$ non-zero terms in the matrix!
- m-scheme code ANTOINE (non public version)
- J-scheme code NATHAN (parallelized version): $0.5^{*} 10^{9} \mathrm{~J}$ basis states

- At first approximation, ${ }^{78} \mathrm{Ni}$ has a double closed shell structure for GS
- But very low-lying competing structures
- From the diagonalization, the first excited states in ${ }^{78} \mathrm{Ni}$ are : - $\mathrm{O}_{2}^{+}-2_{1}^{+}$predicted at 2.6-2.9 MeV and to be deformed intruders of a rotationnal band !!!
- "1p1h" 2_{2}^{+}predicted at $\sim 3.1 \mathrm{MeV}$
- Necessity to go beyond (fpg ${ }_{\frac{9}{2}} d_{\frac{5}{2}}$) LNPS space and beyond ab-initio description
- Portal to a new Island of Inversion

Constrained deformed HF in the SM basis
(Duy Duc Dao, DNO-SM calc., Strasbourg)

- At first approximation, ${ }^{78} \mathrm{Ni}$ has a double closed shell structure for GS
- But very low-lying competing structures
- From the diagonalization, the first excited states in ${ }^{78} \mathrm{Ni}$ are : $-\mathrm{O}_{2}^{+}-2_{1}^{+}$predicted at $2.6-2.9 \mathrm{MeV}$ and to be deformed intruders of a rotationnal band !!!
- "1p1h" 2_{2}^{+}predicted at $\sim 3.1 \mathrm{MeV}$
- Necessity to go beyond $\left(f p g_{\frac{9}{2}} d_{\frac{5}{2}}\right)$ LNPS space and beyond ab-initio description
- Portal to a new Island of Inversion
F. Nowacki et al., PRL 177, 272501 (2016)

- At first approximation, ${ }^{78} \mathrm{Ni}$ has a double closed shell structure for GS
- But very low-lying competing structures
- From the diagonalization, the first excited states in ${ }^{78} \mathrm{Ni}$ are : - $\mathrm{O}_{2}^{+}-2_{1}^{+}$predicted at $2.6-2.9 \mathrm{MeV}$ and to be deformed intruders of a rotationnal band !!!
- "1p1h" 2_{2}^{+}predicted at $\sim 3.1 \mathrm{MeV}$
- Necessity to go beyond $\left(f p g_{\frac{9}{2}} d_{\frac{5}{2}}\right)$ LNPS space and beyond ab-initio description
- Portal to a new Island of Inversion
F. Nowacki et al., PRL 177, 272501 (2016)

- At first approximation, ${ }^{78} \mathrm{Ni}$ has a double closed shell structure for GS
- But very low-lying competing structures
- From the diagonalization, the first excited states in ${ }^{78} \mathrm{Ni}$ are : $-\mathrm{O}_{2}^{+}-2_{1}^{+}$predicted at $2.6-2.9 \mathrm{MeV}$ and to be deformed intruders of a rotationnal band !!!
- "1p1h" 2_{2}^{+}predicted at $\sim 3.1 \mathrm{MeV}$
- Necessity to go beyond $\left(f p g_{\frac{9}{2}} d_{\frac{5}{2}}\right)$ LNPS space and beyond ab-initio description
- Portal to a new Island of Inversion
F. Nowacki et al., PRL 177, 272501 (2016)

- At first approximation, ${ }^{78} \mathrm{Ni}$ has a double

$$
5\left[{ }^{-1+} 1^{+}-\right.
$$

R. Taniuchi et al., NATURE 569, 53-58 (2019)

- At first approximation, ${ }^{78} \mathrm{Ni}$ has a double

${ }^{78} \mathrm{Ni}$ revealed as a doubly magic stronghold against nuclear deformation

R. Taniuchi ${ }^{1{ }^{1,2}}$, C. Santamaria ${ }^{2,3}$, P. Doornenbal ${ }^{2 *}$, A. Obertelli ${ }^{2,3,4}$, K. Yoneda ${ }^{2}$, G. Authelet ${ }^{3}$, H. Baba ${ }^{2}$, D. Calvet ${ }^{3}$, F. Château ${ }^{3}$, A. Corsi ${ }^{3}$, A. Delbart ${ }^{3}$, J.-M. Gheller ${ }^{3}$, A. Gillibert ${ }^{3}$, J. D. Holt ${ }^{5}$, T. Isobe ${ }^{2}$, V. Lapoux ${ }^{3}$, M. Matsushita ${ }^{6}$, J. Menéndez ${ }^{6}$,
S. Momiyama ${ }^{1,2}$, T. Motobayashi ${ }^{2}$, M. Niikura ${ }^{1}$, F. Nowacki ${ }^{7}$, K. Ogata ${ }^{8,9}$, H. Otsu ${ }^{2}$, T. Otsuka ${ }^{1,2,6}$, C. Péron ${ }^{3}$, S. Péru ${ }^{10}$, A. Peyaud ${ }^{3}$, E. C. Pollacco ${ }^{3}$, A. Poves ${ }^{11}$, J.-Y. Rousse ${ }^{3}$, H. Sakurai ${ }^{1,2}$, A. Schwenk ${ }^{4,12,13}$, Y. Shiga ${ }^{2,14}$, J. Simonis ${ }^{4,12,15}$,
S. R. Stroberg ${ }^{5,16}$, S. Takeuchi ${ }^{2}$, Y. Tsunoda ${ }^{6}$, T. Uesaka ${ }^{2}$, H. Wang ${ }^{2}$, F. Browne ${ }^{17}$, L. X. Chung ${ }^{18}$, Z. Dombradi ${ }^{19}$, S. Franchoo ${ }^{20}$, F. Giacoppo ${ }^{21}$, A. Gottardo ${ }^{20}$, K. Hadyŕska-Klęk ${ }^{21}$, Z. Korkulu ${ }^{19}$, S. Koyama ${ }^{1,2}$, Y. Kubota ${ }^{2,6}$, J. Lee ${ }^{22}$, M. Lettmann ${ }^{4}$, C. Louchart ${ }^{4}$, R. Lozeva ${ }^{7,23}$, K. Matsui ${ }^{1,2}$, T. Miyazaki ${ }^{1,2}$, S. Nishimura ${ }^{2}$, L. Olivier ${ }^{20}$, S. Ota ${ }^{6}$, Z. Patel ${ }^{24}$, E. Şahin ${ }^{21}$, C. Shand ${ }^{24}$, P.-A. Söderström ${ }^{2}$,
I. Stefan ${ }^{20}$, D. Steppenbeck ${ }^{6}$, T. Sumikama ${ }^{25}$, D. Suzuki ${ }^{20}$, Z. Vajta ${ }^{19}$, V. Werner ${ }^{4}$, J. Wu ${ }^{2,26} \&$ Z. Y. Xu ${ }^{22}$

R. Taniuchi et al., NATURE 569, 53-58 (2019)

Island of Inversion Mergers

The $\mathrm{N}=40$ and $\mathrm{N}=50$ lol's merge like the $\mathrm{N}=20$ and $\mathrm{N}=28$ lol's did

\diamond Strongly deformed states at $N=Z$:

- Configuration mixing in ${ }^{72} \mathrm{Kr}$
- Most deformed cases for ${ }^{76} \mathrm{Sr},{ }^{80} \mathrm{Zr}$
- Shape transition between ${ }^{84} \mathrm{Mo}$ and ${ }^{86} \mathrm{Mo}$ NSCL/GRETINA Experiment
R.D.O. Llewellyn et al., Phys. Rev. Lett. 124, 152501 (2020)

FIG. 3. Schematics of the $B(\mathrm{E} 2 \downarrow)$ values for the $N=Z$ nuclei

\diamond Strongly deformed states at $N=Z$

- Configuration mixing in ${ }^{72} \mathrm{Kr}$
- Most deformed cases for ${ }^{76} \mathrm{Sr},{ }^{80} \mathrm{Zr}$
- Shape transition between ${ }^{84} \mathrm{Mo}$ and ${ }^{86} \mathrm{Mo}$ NSCL/GRETINA Experiment

nucleus	NpNh*	$B(E 2)\left(\mathrm{e}^{2} . \mathrm{fm}^{4}\right)$			
		ZRP	PHF	DNO-SM	Exp.
${ }^{76} \mathrm{Se}$	4p-4h	924	806	1847	2220
	8p-8h	2189	2101		
	12p-12h	2316	-		
${ }^{80} \mathrm{Zr}$	4p-4h	587	637	2325	1910
	8p-8h	1713	1509		
	12p-12h	2663	2396		

\diamond Strongly deformed states at $N=Z$

- Configuration mixing in ${ }^{72} \mathrm{Kr}$
- Most deformed cases for ${ }^{76} \mathrm{Sr},{ }^{80} \mathrm{Zr}$
- Shape transition between ${ }^{84} \mathrm{Mo}$ and ${ }^{86} \mathrm{Mo}$ NSCL/GRETINA Experiment

Island of Inversion at the $\mathrm{N}=\mathrm{Z}$ line
\diamond Strongly deformed states at $N=Z$

- Configuration mixing in ${ }^{72} \mathrm{Kr}$
- Most deformed cases for ${ }^{76} \mathrm{Sr},{ }^{80} \mathrm{Zr}$
- Shape transition between ${ }^{84} \mathrm{Mo}$ and ${ }^{86} \mathrm{Mo}$ NSCL/GRETINA Experiment

J. Ha, F. Recchia et al., submitted

Island of Inversion at the $\mathrm{N}=\mathrm{Z}$ line

\diamond Strongly deformed states at $N=Z$

- Configuration mixing in ${ }^{72} \mathrm{Kr}$
- Most deformed cases for ${ }^{76} \mathrm{Sr},{ }^{80} \mathrm{Zr}$
- Shape transition between ${ }^{84} \mathrm{Mo}$ and ${ }^{86} \mathrm{Mo}$ NSCL/GRETINA Experiment

J. Ha, F. Recchia et al., submitted

Island of Inversion at the $N=Z$ line

\diamond Strongly deformed states at $N=Z$

- Configuration mixing in ${ }^{72} \mathrm{Kr}$
- Most deformed cases for ${ }^{76} \mathrm{Sr},{ }^{80} \mathrm{Zr}$
- Shape transition between ${ }^{84} \mathrm{Mo}$ and ${ }^{86} \mathrm{Mo}$

 Mo
K. Sieja, F. Nowacki

Phys. Rev. C85, 051301(R) (2012)
707(71)

J. Ha, F. Recchia et al., submitted

- Monopole drift develops in all regions but the Interplay between correlations (pairing + quadrupole) and spherical mean-field (monopole field) determines the physics. It can vary from :
- island of deformation at $\mathrm{N}=20$ and $\mathrm{N}=40$
- deformation at $Z=14, N=28$ for ${ }^{42} \mathrm{Si}$ and shell weakening at $\mathrm{Z}=28, \mathrm{~N}=50$ for ${ }^{78} \mathrm{Ni}$
- The "islands of inversion" appear due to the effect of the correlations, hence they could also be called "islands of enhanced collectivity". As quadrupole correlations are dominant in this region, most of thei inhabitants are deformed rotors. Shape transitions and coexistence show up everywhere
- Quadrupole energies can be huge and understood in terms of symmetries
- even at the drip in fluorine isotopes, bound approximation holds
- strong superfluid regime with pair scattering from sd to pf shells
- odd-even Sn energies staggering does not seem to originate from continuum coupling
Special thanks to:
- D. D. Dao, G. Martinez-Pinedo, A. Poves, S. Lenzi, K. Sieja
- A. Gade, O. Sorlin, A. Obertelli
- J. Herzfeld-Nowacki

