NEUTRON RESONANCE SPECTROSCOPY IN THE SD & FP SHELLS

CALEM R. HOFFMAN FRIB-TA MAY 2023

neutron number

DESCRIBING THE STRUCTURE SURROUNDING & DEFINING THE OXYGEN - FLUORINE DRIP LINES

- WHAT ARE THE RELATIVE CONTRIBUTIONS FROM THE CONTINUUM, COHERENT CORRELATIONS (DEFORMATION), CENTRAL & N-BODY FORCE COMPONENTS, ... WHICH DETERMINE NOT ONLY THE DRIP LINE BUT ALSO THE SPECTROSCOPY IN THE REGION

- SPECIFIC FOCUS ON THE ROLE OF THE OF THE NEUTRON 1P_{3/2} ORBITAL

DESCRIBING THE STRUCTURE SURROUNDING & DEFINING THE OXYGEN - FLUORINE DRIP LINES

- WHAT ARE THE RELATIVE CONTRIBUTIONS FROM THE CONTINUUM, COHERENT CORRELATIONS (DEFORMATION), CENTRAL & N-BODY FORCE COMPONENTS, ... WHICH DETERMINE NOT ONLY THE DRIP LINE BUT ALSO THE SPECTROSCOPY IN THE REGION

- SPECIFIC FOCUS ON THE ROLE OF THE OF THE NEUTRON 1P_{3/2} ORBITAL

ROLE OF THE NEUTRON 1P_{3/2} ORBITAL & THE BALANCE OF THE **CONTRIBUTIONS FROM VARIOUS EFFECTS**

Influence of the continuum - extended wave functions & scattering

- Impact on shell structure & other observables
- Formation of neutron halo states
- Not equal for all orbitals
- Impact on the binding energies & enhanced correlations stabilize the Z > 8 drip line Evidence for a deformed Z = 8 core in Fluorine's isotopes near ²⁴O
- Provides an additional mechanism for the (two) neutron halo formation

Components of the central & n-body forces

- 3 body forces have been shown to hold influence over the Z = 8 drip line Larger role of the tensor force as it impacts the single-particle energies Impact of (non)modified pairing or quadrupole forces

. . .

. . .

Deformation - Coherent correlations & interplay between the neutrons & protons (& core)

INVARIANT MASS SPECTROSCOPY COUPLED WITH SELECTIVE REACTION MECHANISMS - INFLUX OF EMPIRICAL INFORMATION ON THE GROUND & EXCITED STATE SPECTROSCOPY OF THE NEAR DRIP LINE FLUORINE ISOTOPES

THE MONA-LISA+SWEEPER+CAESAR SETUP @ FRIB - NEUTRON & FRAGMENT (+Γ-RAY) 4-VECTOR DETERMINATION - 4 APPROVED EXPERIMENTS [2 - PAC1, 2 - PAC2] - TO START IN EARLY/MID CY2024

http://mona.wabash.edu/html/default/Collaboration.html

NEW DATA: STRUCTURE Observables & derived quantities from neutron invariant mass spectroscopy & nuclear reactions

Orbital angular momentum dependence of partial width & extraction of single-neutron overlap

$$\Gamma = \Gamma_{\rm s.p.} C^2 S$$

$$\Gamma_{sp} = \begin{cases} \frac{2\hbar^2}{MR^2} kR v_l(kR) \frac{2l-1}{2l+1} & l > 0, kR < l^{1/2} \\ \frac{2\hbar^2}{MR^2} kR & l = 0 \end{cases}$$

Invariant mass spectroscopy: exploring above S_n

Revel PRL (2020)

Relative decay energy spectra

278

 (1^{-1})

 (2^{-1})

 (4^{-1})

NEW DATA: STRUCTURE Observables & derived quantities from neutron invariant mass spectroscopy & nuclear reactions

Orbital angular momentum dependence of partial width & extraction of single-neutron overlap

$$\Gamma = \Gamma_{\rm s.p.} C^2 S$$

$$\Gamma_{sp} = \begin{cases} \frac{2\hbar^2}{MR^2} kR v_l(kR) \frac{2l-1}{2l+1} & l > 0, kR < l^{1/2} \\ \frac{2\hbar^2}{MR^2} kR & l = 0 \end{cases}$$

Invariant mass spectroscopy: exploring above S_n

Revel PRL (2020)

Relative decay energy spectra

.278

 (1^{-})

 (2^{-1})

 (4^{-1})

NEW DATA: REACTIONS

Various production reactions available

- Nucleon removal reactions [-Xp, -Xn]
 - Inclusive / exclusive cross sections
 - Initial to final state overlaps [C²S]
 -> deduce initial (ground) state occupancies
 -> components of the final wave function

$$\sigma_{-\ln}^{\rm th}(n\ell_j, S^*_\alpha) = \left(\frac{A}{A-1}\right)^{\mathcal{N}} C^2 S(\alpha, n\ell_j) \,\sigma_{\rm sp}(n\ell_j, S^*_\alpha)$$

- Intermediate energy inelastic reactions [(d,d'), (p,p')]
 - Total / differential cross sections
 - Extract (matter) deformation parameters (β)
 - Deduce isovector / isoscalar contributions to various excitations
 - Search for differing coherent excitation modes [soft-, pygmy- dipole resonances]
 - ...

Revel PRL (2020)

Murray PRC (2019)

NEAR-TERM MEASUREMENTS [< 3 YEARS] PAC1/2 /(3) FRIB @ <= 20 kW

Where does the neutron $1p_{3/2}$ orbital lie in the continuum at N = 21?

31
Ne(9 Be,-1 p) 30 F* \rightarrow^{29} F(*) + n

³¹Ne g.s.
$$[J^{\pi} = 3/2^{-}]$$
:
 $\pi (0d_{5/2}1s_{1/2})^{2} \otimes \nu (1p_{3/2}0f_{7/2})^{1}$

 30 F $[J^{\pi} = 1 - 4^{-}]$

 $C^2 S_{\ell=1} \quad C^2 S_{\ell=3} \quad C^2 S_{\ell=1} \quad C^2 S_{\ell=3}$ 0.000, 2-0.36 0.18 0.00 0.23 0.145, 3-0.02 0.39 0.21 -0.43 0.00 0.18 0.349, 4-

²⁹F(1/2⁺)¹

29F(5/2+)

Hoffman PAC1 (2021)

What / where are the types / locations of the collective excitations in the N = 18 & 20 systems?

Is there evidence for exotic coherent (unbound) modes?

MID-TERM MEASUREMENTS [3 - 5+ YEARS] Beyond PAC3 FRIB @ 100kW

How do the neutron 1p_{3/2} - 0f_{7/2} occupancies & the correlations evolve through ³⁶Al - ³⁴Na - ³²F?

- Determine nature of the ³²F ground state & low-lying structure
- Overlaps with bound states in ³¹F (if any)
- Population of final state dependent upon nature of ³⁴Na g.s.
- Decay features are analogous to ³⁰F measurement

34
Na(X,-2p) 32 F \rightarrow^{31} F+n

 $\pi (0d_{5/2}1s_{1/2})^3 \otimes \nu (1p_{3/2})^2 (0f_{7/2})^2 + \nu (1p_{3/2})^3 + \nu (0f_{7/2})^3$

To what level do the np-nh excitations persist beyond the drip line?

- Distributed population of final states in ³¹F
- Decays through known levels in ³⁰F aid in J assignments
- Inclusive / exclusive cross sections

32
Ne $(X,-1p)^{31}$ F \rightarrow^{29} F $+2n$

	SDPF-M			EEDf1		
	0p-0h	2p-2h	4p-4h	0p-0h	2p-2h	4p-4h
³² Mg	4.7	82.5	12.7	1.8	36.2	51.9
³⁰ Ne	3.9	74.1	22.0	0.5	19.8	68.1
³⁴ Mg	9.5	82.0	8.4	1.6	49.5	43.4
³² Ne	10.0	76.5	13.4	1.2	43.3	50.6

LONG-TERM MEASUREMENTS [5+ YEARS]

Ultimate rates FRIB @ ~400kW

What is the role of deformation (np-nh excitations), including continuum coupling, on the structure in the N = 24 transition region?

Doornenbal PTEP (2014)

Are there exotic excitation modes built off the "likely" extended *p*-wave ground state?

$$^{31}\mathrm{F}(d,d')(p,p'){\rightarrow}^{29}\mathrm{F}{+}2n$$

Kay, Chen ATLAS PAC (2019)

THEORETICAL WORK IN THE REGION Structure

- Place an emphasis on systematic calculations
 - Consistent predictions across Z = 8 & 9 (N = 16 24)
 - Reproduce Oxygen & Fluorine spectra under single framework
 - Calculations of partial widths / decay branches (1n decay vs. multi-n decay)
- Interest in the isolation of the role of the neutron 1p_{3/2} orbital
 - Influence on driving deformation in the Z = 14 16 neutron-rich region
 - Explicit role in driving deformation in Z = 9 region
 - Influences from its proximity near / in the continuum handled properly?

Fossez PRC (2022)

THEORETICAL WORK IN THE REGION Structure

- Place an emphasis on systematic calculations
 - Consistent predictions across Z = 8 & 9 (N = 16 24)
 - Reproduce Oxygen & Fluorine spectra under single framework
 - Calculations of partial widths / decay branches (1n decay vs. multi-n decay)

Interest in the isolation of the role of the neutron 1p_{3/2} orbital

- Influence on driving deformation in the Z = 14 16 neutron-rich region
- Explicit role in driving deformation in Z = 9 region
- Influences from its proximity near / in the continuum handled properly?

Hoffman PAC1 (2021)

THEORETICAL WORK IN THE REGION Structure

- Place an emphasis on systematic calculations
 - Consistent predictions across Z = 8 & 9 (N = 16 24)
 - Reproduce Oxygen & Fluorine spectra under single framework
 - Calculations of partial widths / decay branches (1n decay vs. multi-n decay)

Interest in the isolation of the role of the neutron 1p_{3/2} orbital

- Influence on driving deformation in the Z = 14 16 neutron-rich region
- Explicit role in driving deformation in Z = 9 region
- Influences from its proximity near / in the continuum handled properly?

Singh PRC (2022)

THEORETICAL OVERLAP

Reactions

One & two proton removal reactions [H/C/Be targets]

- (Sudden) eikonal direct-reaction model calculations:
- Calculated cross sections for the extraction of overlaps
- Determination of the knockout orbital angular momentum
- Transition / Complement with proton reactions (p,2p) @ FRIB400

Intermediate-energy inelastic reactions [(d,d'),(p,p')]

- Relies on reaction theory to extract information
 - (Matter) deformation β , spin-parity guidance, ...
- i.e. DWBA, are optical potential parameters valid?
 - ~100 150 MeV/u, "direct" population of unbound states, ...
- Continued request for developments in the joining of reaction & structure theories.

Aumann PPNP (2021)

THEORETICAL OVERLAP

Reactions

One & two proton removal reactions [H/C/Be targets]

- (Sudden) eikonal direct-reaction model calculations:
- Calculated cross sections for the extraction of overlaps
- Determination of the knockout orbital angular momentum
- Transition / Complement with proton reactions (p,2p) @ FRIB400

Intermediate-energy inelastic reactions [(d,d'),(p,p')]

- Relies on reaction theory to extract information
 - (Matter) deformation β , spin-parity guidance, ...
- i.e. DWBA, are optical potential parameters valid?
 - ~100 150 MeV/u, "direct" population of unbound states, ...
- Continued request for developments in the joining of reaction & structure theories.

Aumann PPNP (2021)

PARTING COMMENTS

Spectroscopy involving the population & decay of neutron-unbound states

- Determine energies, spin-parity & orbital angular momenta constraints, neutron decay branches, partial widths, and overlaps
- Request for (continued) systematic calculations Z & N, ...
- High interest in the isolation of the neutron 1p_{3/2}, orbital influences from the continuum, deformation effects (correlations), ...
- Establish the understanding of the oxygen fluorine drip lines in the early FRIB era

Reaction cross sections, β -delayed γ -ray & neutron spectroscopy, prompt γ -ray spectroscopy, mass measurements, transfer reactions, ...

MoNA-LISA neutron detector array

> charged particle detector chambe

> > dipole mad

SINGLE & MULTI-NUCLEON TRANSFER REACTIONS AT REA

www.anl.gov

$\begin{array}{l} \textbf{BEHAVIOR OF THE ORBITAL ENERGIES NEAR THRESHOLD}\\ \textbf{-} S-WAVE: MOST DISTINCT BEHAVIOR AT $S_N \sim 0$\\ \textbf{-} PERSISTS FOR ALL ORBITS NEAR THEIR BARRIER THRESHOLDS IN THE CONTINUUM [COULOMB BARRIER PROTONS, L>0] \end{array}$

DATA & THEORY Extraction of strength distributions @ ~10 MeV/u via transfer reactions

Example with the single-neutron adding reaction ³²Si(d,p)³³Si carried out w/ SOLARIS@ReA using a long-lived sample

Observe Q-values & yields - determine excitation energies & differential cross section

Reaction theory [DWBA] applied to extract orbital angular momenta transfer & overlaps

Similar methods with nucleon removal & pair transfer - key on $0^+_{1,2(3)}$ mixing, and $J^{\pi} = 3^-/5^-$ population

Deduce strength distributions (fragmentation), occupancy, & singleparticle energy centroids

18

WHAT NEW DATA CAN WE PROVIDE IN OTHER REGIONS?

Z ~ 13 - 14

- Characterize the single-neutron energies through the N = 20 & 28 regions [tests correlations as well]
- ³⁵⁻⁴³P & ³⁴⁻⁴⁰Si neutron adding & removal [(d,t) & (d,p)]
- Two-neutron (pn) pairing probe [(t,p)]

N ~ 40 & 50

- Single-particle evolution towards ⁶⁰Ca & 78
 - Role of the s-wave on ordering & sustaini neutron halo/skin
- ⁶⁴Cr ⁶⁶Fe & ⁸⁴Se ⁸⁰Zn neutron adding & removal [(d,t) & (d,p)]

N~126

- Evolution of the levels south-east of ²⁰⁸Pb
- Build upon ²⁰⁶Hg(d,p) results from HIE-ISOLDE
- Reactions on ²⁰⁴Pt beam

1/2+

www.anl.gov

