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0.
1. Compound-nucleus reactions
2. S-matrix in the configuration-interaction (CI) framework
3.  DFT or Hamiltonians  or both?
4.  The most challenging problem in reaction theory
 (for nonrelativistic fermions).

Remarks on Reaction Theory



1. Compound-nucleus reactions
—All you  need are optical potentials—when it works.
—We saw the need for reliable CN predictions in this
workshop (Eg.  Grzywacs).
—CN connection to (1+2)-body Hamiltonians is weak.           
Rule of thumb:  require   

See also  Phys. Lett. 148B 5 (1984):

—Goal:  a global theory of                  at (A,E,J) based  on 
realistic 2B interactions.
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2. Reaction theory in the configuration-interaction (CI) framework.

—The S-matrix is more fundamental than the R-matrix.   

—The S-matrix may be calculated by linear algebra from
the Hamiltonian matrix of the internal states together with the
matrices of reduced widths of those states coupled to the 
external channels.  The formulas (omitting direction reactions):

—The formalism might be applied to large-amplitude shapes
by making use of reference configurations calculated in DFT and  in 
the presence of constraining fields (GCM).  The resulting non-
orthogonal CI bases is a minor complication.

—E-dependent fluctuations are easy to extract in this formulation.



3.  DFT or Hamiltonians or both?
—For computational reasons DFT is the method of choice for global 
surveys.
—The CI  methodology requires a Hamiltonian.
—A compromise:  use DFT to construct a space of orbitals 
and calculate the matrix elements with a Hamiltonian. Seems
promising from the experience in condensed matter physics
(D. Sangelli et al., Phys. Rev. B 94 195205 (2016).

Indirect band gap:
DFT      0.5  eV
GW       1.2  eV
Exp.      1.17 eV

Direct band gap:
DFT    2.6 eV
BS      3.4 eV
Exp.   ~3.4 eV



4. The challenging problem:  nuclear fission at barrier-top energies
—TDDFT  doesn’t allow barrier penetration
—GCM mapping to Schroedinger eq. doesn’t allow diffusive 
dynamics.
—What can one learn from the S-matrix/CI approach with 
limited computational resources?





Preliminary findings
1.  Transmission coefficients are insensitive to fission exit widths
2.   No dominating transition states
3.   Moderate sensitivity to pairing interaction strengths

Caveats
1. Coupling of CN states to bridge states not yet anchored to a
(1+2)-body Hamiltonian.
2.  GCM requires a Gaussian overlap approximation.
3.  Methodology needs to be validated with respect to other
reaction theory methods. 



FIG. 1. Experimental fission cross sections in the range 10 - 25 keV. Circles: from Ref. [3]; squares:

from [2]; diamonds: from [1]. The latter two data sets have been shifted upward for clarity in the

plotting of the figure.

energy-dependent averaged cross section, with the details to be specified later. To keep the

number of entrance channels to a minimum, we limit the analysis to neutron energies below

100 keV, which is su�cient to span the structure of interest at 22 keV.

The organization of this article is as follows. In Section II, we review the interpretation

of the autocorrelation function and its parameterization. In Section III, we confirm the

expected behavior of the autocorrelation function in the isolated-resonance region at the

lowest energies. The data in the higher energy region of unresolved resonances is analyzed

in Sect. IV. Section V summarizes the two main conclusions of our analysis. The first

conclusion is that the eV-scale correlations due to compound nucleus resonances are present

and a↵ect the correlation function far beyond the isolated resonance region. Second, only

a limit can be placed on any systematic correlation structure at the one-keV energy scale.

Thus the peaking seen in Fig. 1 is isolated feature of the energy-dependent cross section. We

argue for a campaign of new measurements to pinpoint the origin of the observed structure

and to see if it occurs in above-barrier fission of other nuclei.
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235U(n,f) 
Bowman, et al. (1971)

Perez, et al. (1971)

Moore, et al. (1971)

My original motivation: are there fission-channel resonances above the barriers?

Some provocative data:
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INTRODUCTION:The reproducibility of results
is one of the underlying principles of science. An
observation canonly be accepted by the scientific
community when it can be confirmed by inde-
pendent studies. However, reproducibility does
not come easily. Recent works have painfully
exposed cases where previous conclusionswere
not upheld. The scrutiny of the scientific com-
munity has also turned to research involving
computer programs, finding that reproducibil-
ity depends more strongly on implementation
than commonly thought. These problems are
especially relevant for property predictions of
crystals and molecules, which hinge on precise
computer implementations of the governing
equation of quantum physics.

RATIONALE:Thiswork focuses ondensity func-
tional theory (DFT), a particularly popular quan-

tum method for both academic and industrial
applications. More than 15,000 DFT papers are
published each year, and DFT is now increas-
ingly used in an automated fashion to build
large databases or applymultiscale techniques
with limited human supervision. Therefore, the
reproducibility of DFT results underlies the
scientific credibility of a substantial fraction of
current work in the natural and engineering
sciences. A plethora of DFT computer codes
are available, many of them differing consid-
erably in their details of implementation, and
each yielding a certain “precision” relative to
other codes. How is one to decide formore than
a few simple cases which code predicts the cor-
rect result, and which does not? We devised a
procedure to assess the precision of DFT meth-
ods and used this to demonstrate reproduci-
bility among many of the most widely used

DFT codes. The essential part of this assessment
is a pairwise comparison of a wide range of
methodswith respect to their predictions of the
equations of state of the elemental crystals. This
effort required the combined expertise of a large
group of code developers and expert users.

RESULTS:We calculated equation-of-state data
for four classes of DFT implementations, total-
ing 40 methods. Most codes agree very well,
with pairwise differences that are comparable
to those between different high-precision exper-

iments. Even in the case of
pseudization approaches,
which largely depend on
theatomic potentials used,
a similar precision can be
obtainedaswhenusing the
full potential. The remain-

ing deviations are due to subtle effects, such as
specific numerical implementations or the treat-
ment of relativistic terms.

CONCLUSION: Our work demonstrates that
the precision of DFT implementations can be
determined, even in the absence of one absolute
reference code. Although this was not the case 5
to 10 years ago,most of the commonlyused codes
and methods are now found to predict essen-
tially identical results. The established precision
of DFT codes not only ensures the reproducibility
of DFT predictions but also puts several past and
future developments on a firmer footing. Any
newly developedmethodology can nowbe tested
against the benchmark to verify whether it
reaches the same level of precision. NewDFT ap-
plications can be shown to have used a suffi-
ciently precise method.Moreover, high-precision
DFT calculations are essential for developing im-
provements to DFTmethodology, such as new
density functionals, whichmay further increase
the predictive power of the simulations.▪
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Recent DFTmethods yield reproducible results.Whereas older DFT implementations predict different values (red darts), codes have now evolved to
mutual agreement (green darts).The scoreboard illustrates the good pairwise agreement of four classes of DFT implementations (horizontal direction)
with all-electron results (vertical direction). Each number reflects the average difference between the equations of state for a given pair of methods,with
the green-to-red color scheme showing the range from the best to the poorest agreement.
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obtained by averaging Di over all 71 crystals in
the benchmark set. Alternative definitions of D
essentially render the same information (27, 28).
In this work, we applied the original D protocol
to 40 DFT implementations of the Perdew-Burke-
Ernzerhof (PBE) functional (43). Appropriate
numerical settings were determined separately
for each method, ensuring converged results. In
all calculations, valence and semi-core electrons
were treated on a scalar-relativistic level, be-
cause not all codes support spin-orbit coupling.
This is not a limitation, because the aim is to
compare codes with each other rather than to
experiment. We do not elaborate here on speed
andmemory requirements, for which we refer to
the documentation of the respective codes.
Figure 4 presents an overview of the most im-

portant D values, categorized by method: all-
electron, PAW, ultrasoft pseudopotentials, and
norm-conserving pseudopotentials. Approaches
with a similar intrinsic precision are clustered
together in this way. Both the full results and
the most important numerical settings are in-
cluded in tables S3 to S42. A complete specifica-
tion would have to include code defaults and
hard-coded values, so a reasonable compromise
was chosen. A full specification could be re-
alized by recent endeavors in full-output data-
bases (44, 45) or workflow scripting (46, 47),
but this capacity is not yet available for several
of the codes used in this study. We have, how-
ever, tried to provide generation scripts for as
many methods as possible (48), and we empha-
size the need for such tools as an important fu-
ture direction.

Comparing all-electron methods

Although the definition of D does not favor a
particular reference, it is instructive to first ex-
amine the D values with respect to all-electron
methods (Fig. 4). They generally come at a com-
putationally higher cost, but all-electron ap-
proaches are often considered to be a standard
for DFT calculations, because they implement
the potential without pseudization. By com-
paring pseudopotential or PAW methods with
all-electron codes, we can therefore get an idea
of the error bar associated with each pseudiza-
tion scheme. The D values between different
all-electron methods reflect the remaining dis-
crepancies, such as a different treatment of the
scalar-relativistic terms or small differences in
numerical methods.
To gain some insight into typical values of D,

we should first establish which values for D can
be qualified as “small,” so that we know which
results can be considered equivalent. A first in-
dication comes from converting differences
between high-precision measurements of EOS
parameters into a D format. Comparing the high-
quality experimental data of Holzapfel et al. for
Cu, Ag, and Au (49) with those of Kittel (50) and
Knittle (51), for example, shows a small difference
Dexp of 1.0 meV per atom. Because the average all-
electron D for thesematerials is only 0.8meV per
atom, this implies that the precision of many DFT
codes outperforms experimental precision.

Secondly, we also considered the differences
between codes in terms of commonly reported
EOS parameters. The 1.0meV-per-atommaximum
D among all-electron codes (Fig. 4, top) corresponds
to an average volume deviation of 0.14 Å3 per atom
(0.38%) or a median deviation of 0.05 Å3 per atom
(0.24%) over the entire 71-element test set. For
the bulkmodulus, the average deviation is 1.6 GPa
(4.0%), and the median deviation 0.8 GPa (1.6%).

Comparedwith the scatter on experimental values,
which can amount to up to 35% for the bulk
moduli of the rare earth metals [for instance,
see (52)], these values are very small. The differ-
ence between EOS obtained by independent all-
electron codes is hence smaller than the spread
between independent experimental EOS. We con-
clude that, unless some elements deviate sub-
stantially from the overall trend, codes with a
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Fig. 2. Electronic
states in solid silicon.
The valence states are
delocalized over the
solid (green line),
because the wave
functions overlap from
one atom to the next.
The lowest-energy 1s
state (red) is at an
energy two orders of
magnitude lower than
the valence states and is
strongly localized near
the nucleus, with no
overlap between the
atoms.The gray regions
around the atoms indi-
cate approximately
where the wave
function, density, and
potential are smoothed
in pseudized methods.

Fig. 1. Historical evolution of the predicted equilibrium lattice parameter for silicon. All data points
represent calculations within the DFT-PBE framework. Values from literature (data points before
2016) (15, 16, 18, 56–62, 63–65) are compared with (i) predictions from the different codes used in
this study (2016 data points, magnified in the inset; open circles indicate data produced by older
methods or calculations with lower numerical settings) and (ii) the experimental value, extrapolated
to 0 K and corrected for zero-point effects (red line) (26). The concepts of precision and accuracy
are illustrated graphically.
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DFT in quantum chemistry and condensed matter

Perdue, et al., PRL 77 (1996)



Dynamics from scattering theory

Key concept is the channel and its transmission coefficient  T.

In mesoscopic physics, the Landauer formula for quantized conductance:

G(Ef ) =
1

R
=

e2

2⇡~
X

i

Ti(Ef )

T (E) ⇡ ⇥(E � E0)

Same physics is in the original formula for fission decay rates:

W =
1

2⇡~⇢
X

c

Tc Bohr and Wheeler  (1939)

Var UME 60, NUMBER 9 PHYSICAL REVIEW LETTERS 29 FEaRU~RV 1988
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FIG. 1. Point-contact resistance as a function of gate volt-
age at 0.6 K. Inset: Point-contact layout.

FIG. 2. Point-contact conductance as a function of gate
voltage, obtained from the data of Fig. 1 after subtraction of
the lead resistance. The conductance shows plateaus at multi-
ples of e /xh.

pinched off at Vg =—2.2 V.
We measured the resistance of several point contacts

as a function of gate voltage. The measurements were
performed in zero magnetic field, at 0.6 K. An ac lockin
technique was used, with voltages across the sample kept
below kT/e, to prevent electron heating. In Fig. 1 the
measured resistance of a point contact as a function of
gate voltage is shown. Unexpectedly, plateaus are found
in the resistance. In total, sixteen plateaus are observed
when the gate voltage is varied from —0.6 to —2.2 V.
The measured resistance consists of the resistance of the
point contact, which changes with gate voltage, and a
constant series resistance from the 2DEG leads to the
point contact. As demonstrated in Fig. 2, a plot of the
conductance, calculated from the measured resistance
after subtraction of a lead resistance of 400 0, shows
clear plateaus at integer multiples of e /&A. The above
value for the lead resistance is consistent with an es-
timated value based on the lead geometry and the resis-
tivity of the 2DEG. We do not know how accurate the
quantization is. In this experiment the deviations from
integer multiples of e /zh might be caused by the uncer-
tainty in the resistance of the 2DEG leads. Inserting the
point-contact resistance at V~= —0.6 V (750 0) into
Eq. (1) we find for the width W,„=360nm, in reason-

able agreement with the lithographically defined width
between the gate electrodes.
The average conductance increases almost linearly

with gate voltage. This indicates that the relation be-
tween the width and the gate voltage is also almost
linear. From the maximum width W,„(360 nm) and
the total number of observed steps (16) we estimate the
increase in width between two consecutive steps to be 22
nm.
We propose an explanation of the observed quantiza-

tion of the conductance, based on the assumption of
quantized transverse momentum in the contact constric-
tion. In principle this assumption requires a constriction
much longer than wide, but presumably the quantization
is conserved in the short and narrow constriction of the
experiment. The point-contact conductance G for ballis-
tic transport is given by "

G =e NpW(It/2m)( [ k„~ ).

The brackets denote an average of the longitudinal wave
vector k, over directions on the Fermi circle, N p
=m/eh 2 is the density of states in the two-dimensional
electron gas, and W is the width of the constriction. The
Fermi-circle average is taken over discrete transverse
wave vectors k» = ~ nz/W (n =1,2, . . . ), so that we can
write

T

&Ik. l&= J d'krak, )&(k—kF) g 6' k»—
7C F 8', -) 8' (3)

Carrying out the integration and substituting into Eq. (2), one obtains the result

N,

(4)

where the number of channels (or one-dimensional subbands) N, is the largest integer smaller than kFW/x. For

849


