CAK RIDGE

Oak Ridge National Laboratory

Some (selective) transfer opportunities at FRIB

• Transfer reactions for neutron capture

S.D. Pain

- Constraining n-capture/Surrogate reactions with fast beams
- Transfer reactions on isomers
 - sd-shell nuclides
 - Constraining proton capture [(d,p) for (p,γ)]
 - Direct (α ,p)
 - Comparison with SM

FRIB TA Workshop, May 2023

Transfer reaction observables

- Level energies (few keV hundreds keV, depending on reaction, beam and instrumentation)
- (Differential) cross sections
 - transferred orbital angular momenta (parity, some J)
- Decay channels of excited states
 - γ spec
 - γ /particle emission probabilities [discrete, or P(E_x)]
- Direct reaction analysis
 - Spectroscopic factors (C²S)
 - Structure
 - Astrophysics
- Surrogate reactions

Selective of particle/hole states

- Stripping reactions [eg (d,p) (d,n)] probe of single-particle excitations
- Pickup reactions [eg (p,d) (d,³He)] probe of hole excitations
- Spin through momentum matching (choice of probe, and beam energy)

Astrophysics

Level energies (exp. affect rates)

Spins (barrier penetrabilities – ell, not J, most important)

C²S

Constraints on LD/GSF – eg SRM

Preferentially populates particle excitations (depending on WF, may or may not see via other probes – beta decay, KO, etc)

Branching ratios

Though direct measurements are goal, need to discover important states first by some other means

Transfer reactions at FRIB

Beam energy ~3-50 MeV/A

- Cross sections (absolute and differential)
- Beam intensity
- Kinematic compression
- Beam optics
- Special cases...

150

10

4 MeV/A

6 MeV/A

—10 MeV/A

20 MeV/A

30 MeV/A

40 MeV/A

15

Detectors at FRIB

Si+Solenoid arrays (SOLARIS,

Active targets (ATTPC)

Gas jet targets (*JENSA*)

Devices often coupled to recoil separators (S800, SECAR, ISLA)

Charged-particle arrays (*HiRA, ORRUBA*, ...)

n arrays (*VANDLE. LENDA, NEXT, ODeSA*, ...)

Ge arrays (*GRET(IN)A, SeGA, Clovers,...)*

Constraining neutron-capture cross sections

- Neutron capture can occur via resonances (eg compound nucleus formation), and direct capture to bound states
- Depending on neutron level density/strong resonances, one or other may be dominant
- In general, need methods to constrain *both* mechanisms

Neutron transfer reactions

- Selective (states with target+n wavefunctions)
- Give properties of bound states and isolated resonances (E, J^π, C²S)
 - for DSD
 - Constrain structure models
- Can be used as surrogate for CN capture (SRM)

Constraining neutron-capture cross sections

- Neutron capture can occur via resonances (eg compound nucleus formation), and direct capture to bound states
- Depending on neutron level density, one or other may be
- Ideally need methods to constrain *both* mechanisms

8

Constraining n-capture cross sections - DSD

Constraining CN n-capture cross sections - SRM

- Model reaction in HF formalism
- Essential theory components:
 - Formation of CN (σ^{CN}) simple
 - Decay of CN (G^{CN}) complicated (Escher)
 - Need to place experimental constraints on G^{CN}

CAK RIDGE

A surrogate reaction forms the "same"* compound nucleus as the desired reaction

- Model experimentally-determined $P_{p\gamma}(E_{ex})$ in HF formalism to constrain G^{CN}
- Essential theory components:
 - Decay of CN (*G^{CN}*) complicated (Escher)
 - *Entry spin distribution (FCN) complicated (Potel)

Figures and equations adapted from J.E. Escher et al. Rev. Mod. Phys. 84, 353 (2012).

Constraining CN n-capture cross sections - SRM

10

Ratkiewicz et al., Phys. Rev. Lett. 122, 052502 (2019)

О

⁹⁶Mo

Ratkiewicz et al., Phys. Rev. Lett. 122, 052502 (2019)

G. Potel

12

SRM outlook...

- SRM Progress
 - Validation of (d,p γ) as surrogate for (n, γ)
 - understanding J^{π} formation distributions key ingredient
 - Development of (p,d) as (n, γ) surrogate

- Ongoing development of (p,p') as (n, γ) surrogate
- What are the limits of the statistical approach...
- More from Jutta next week...

Expt. challenges moving to RIB experiments

- Resolution (target thickness, kinematic compression) (~100 keV -> 500-1000 keV)
- Contaminants (eg carbon in target however, only need to address this 'once' – not a surprise every time)
- Luminosity (beam intensity) statistics-limited measurements
- Limitation on nuclides that can be practically studied
 - Nuclides without a reasonably-collecting transitions are very challenging - complex γ decay schemes disperses strength over numerous γ transitions
 - Isomers (moving with beam) lead to unobserved gamma emissions

An alternative technique – uniquely suited to FRIB...

12 **CAK RIDGE** National Laboratory

A new technique with RIBs

...detect the recoiling nucleus to determine if decayed by n or γ Use charged-particle [e.g (d,p)] to determine the formation E_x(as before)

To bound states ⁸⁴Se(d,p)⁸⁵Se*(γ)⁸⁵Se

To unbound states

- ${}^{84}Se(d,p){}^{85}Se^{*}(\gamma){}^{85}Se$
- ⁸⁴Se(d,p)⁸⁵Se*(n)⁸⁴Se

A new technique with RIBs

...detect the recoiling nucleus to determine if decayed by n or γ Use charged-particle [e.g (d,p)] to determine the formation E_x (as before)

To bound states $^{84}Se(d,p)^{85}Se^{*}(\gamma)^{85}Se$

To unbound states

- $^{84}Se(d,p)^{85}Se^{*}(\gamma)^{85}Se$
- ⁸⁴Se(d,p)⁸⁵Se*(n)⁸⁴Se

et al.,

A1900

⁸⁴Se

An alternative with RIBs...

H. Sims, J.A. Cizewski, S.D.Pain, A. Ratkiewicz,

ב≻

10-1

et al.,

Advantages

- concentrates all statistics in a single observable
- high (25-50%), simple and experimentallydeterminable detection efficiency (cf γ cascades)
- Enables measurements on (almost) any nucleus
 on same footing

Challenges

 need careful characterization of BG reactions on C in target

Work ongoing with Jutta to extract (n,γ) cross section

Excitation energy [MeV]

Unique opportunity at FRIB

Combination

- FRIB n-rich beams
- S800
- GODDESS [ORRUBA+GRET(IN)A]

Two approved experiments

- ⁸⁰Ge (Sims, Grinder, Cizewski, Pain, et al)
 weak r process
- ⁷⁵Ga (Pain, Balakrishnan, et al)
 - i-process

Cannot measure all; target specific interesting cases

Ideally like to have (empirical) predictive model of (n,γ) cross sections

Model constrained by experiment in sensitive cases?
 CAK RIDGE National Laboratory

Detect protons, gammas and recoils

- Discrete particle-γ spectroscopy
- SRM with recoils
- SRM with γ

Transfer on sd nuclei

- Testing ground of LBSM calculations
 - Wealth of experimental data (near stability)
 - Well-constrained interactions for sd states (eg USDb)
 - Mid shell
 - highly mixed states
 - non-zero J^π ground states
 - non-spherical systems
 - How well are *fp* excitations described?
- Reaction models
 - Lower-end of well-constrained nucleon-nucleus global potentials (near stability)

Na

16Ne

Jpi=0+ T1/2s-5.395E

15F Jpi=(1/2+) F1/2s=6.5821

140

13N

12C Jpi=0+ T1/2=>1.000E

- ADWA vs DWBA?
- Finite range effects?
- ...

- Beautiful experiments
- Astrophysical motivation N = Z

							Sc	36Sc	37Sc	38Sc	39Sc _{Jpi=(7/2-)}	40Sc Jpi=4- T1/2s=1.823E	41Sc Jpi=7/2- T1/2s-5.963E	42S Jpi=0+ T1/3=-6.813E	43Sc Jpi=7/2- T1/2s-1.401E	44Sc Jpi=2+ T1/2s=1.414
5						Ca	34Ca _{Jpi-0+}	35Ca T1/2s-5.000E	36Ca Jpi-0+ T1/2s=1.020E	37Ca Jpi-3/2+ T1/2s=1.811E	38Ca Jpi-0+ T1/2s=4.400E	39Ca Jpi-3/2+ T1/2s=8.596E	40C*4 Jpi-0) T1/2×1.000E	41Ca Jpi-7/2- T1/2s=3.250E	42Ca Jpi-0+ T1/2s>1.000E	43Ca Jpi-7/2- T1/2s>1.000
					к	32K	33K	34K	35K Jpi=3/2+ T1/2s=1.900E	36K Jpi=2+ T1/2s=3.420E	37K Jpi=3/2+ T1/2s=1.226E	38K Jni=3+ T1/2.=4.582E	39K Jpi=3/2+ T1/2s>1.000E	40K Jpi=4- T1/2s=4.030E	41K Jpi=3/2+ T1/2s>1.000E	42K Jpi=2- T1/2s=4.450
es				Ar	30Ar	31Ar T1/2s=1.510E	32Ar Jpi=0+ T1/2s=9.800E	33Ar Jpi=1/2+ T1/2s=1.730E	34Ar Jpi=0+ T1/2s=8.445E	35Ar Jpi=3/2+ T1/2s=1.775E	36A J _{Di=0+} T1/2~1.000E	37Ar Jpj=3/2+ T1/2s=3.027E	38Ar Jpi=0+ T1/2s>1.000E	39Ar J _{Di} =7/2- T1/2s=8.489E	40Ar Jpj=0+ T1/2s>1.000E	41Ar Jpi=7/2- T1/2s=6.560
			CI	28CI	29CI	30CI	31CI T1/2s=1.500E	32CI Jpi=1+ T1/2s 2.980E	33Cl Jpi=3/2+ T1/2s 2.511E	34C! Jpi=0- T1/20 1.526E	35CI Jpi=3/2+ T1/2s>1.000E	36CI Jpi=2+ T1/2s=9.499E	37CI Jpi=3/2+ T1/2s>1.000E	38CI Jpi=2- T1/2s=2.234E	39CI Jpi=3/2+ T1/2s=3.336E	40Cl Jpi=2- T1/2s 8.100
		S	265	27S	28S Jpi=01 T1/2s=1.250H	29S Jpi=5/21 T1/2s=1.870E	30S Jpi=0+ T1/2s=1.178H	31S Jpi-1/2+ T1/2s=2.572H	328 Jpi-01 TT/2×1.000F	33S Jpi=3/2+ T1/2s>1.000E	34S Jpi=0+ T1/2s>1.000H	35S Jpi=3/21 T1/2s=7.561E	36S Jpi=01 T1/2s>1.000E	37S Jpi=7/2- T1/2s=3.030H	38S Jpi=01 T1/2s=1.022H	39S Jpi=(3/2.5/2 T1/2s=1.150
	Ρ	24P	25P	26P Jpi=(3+) T1/2s=2.000E	27P Jpi=1/2+ T1/2s=2.600E	28P Jpi=3+ T1/2s=2.703E	29P Jpi=1/2+ T1/2s=4.140E	30P Jni=1+ T1/2 =1.499E	31P Jpi=1/2+ T1/2s>1.000E	32P Jpi=1+ T1/2s=1.232E	33P Jpi=1/2+ T1/2s=2.189E	34P Jpi=1+ T1/2s=1.243E	35P Jpi=1/2+ T1/2s=4.730E	36P T1/2s=5.600H	37P T1/2s=2.310E	38P T1/2s=6.400
Si	22Si Jpi=0+ T1/2s=6.000E	23Si	24Si Jpi=0+ T1/2s=1.020E	25Si Jpi=5/2+ T1/2s=2.200E	26Si Jpi=0+ T1/2s=2.234E	27Si _{Jpi=5/2+} T1/2s=4.160E	285 Jpi=0+ T1/2.>1.000E	29Si J _{Di=1/2+} T1/2s>1.000E	30Si J _{DI=0+} T1/2∽1.000E	31Si _{Jpi=3/2+} T1/2s-9.438E	32Si Jpi=0+ T1/2s=5.428E	33Si T1/2s=6.180E	34Si Jpi=0+ T1/2s=2.770E	35Si T1/2s=7.800E	36Si _{Jpi=0+} T1/2s=4.500E	37Si
AI	21AI	22AI T1/2s-7.000E	23AI T1/2s-4.700E	24AI Jpi-4+ T1/2s=2.053E	25AI Jpi-5/2+ T1/2s=7.183E	26A! Jpi-5+ T1/2-2.335E	27AI Jpi-5/2+ T1/2s>1.000E	28AI ^{Jpi-3+} T1/2s=1.345E	29AI Jpi-5/2+ T1/2s=3.936E	30AI Jpi-3+ T1/2s=3.600E	31AI Jpi-(3/2,5/2)+ T1/2s=6.440E	32AI Jpi-1+ T1/2s=3.300E	33AI	34AI T1/2s-6.000E	35AI T1/2s-1.500E	36AI
Mg	20Mg Jpi=0+ T1/2s=9.500E	21Mg Jpi=(3/2,5/2)+ T1/2s=1.220E	22Mg Jpi=0+ T1/2s=3.857E	23Mg Jpi=3/2+ T1/2s=1.132E	24M Jpi=0+ T1/2=1.000E	25Mg Jpi=5/2+ T1/2s>1.000E	26Mg Jpi=0+ T1/2s>1.000E	27Mg Jpi=1/2+ T1/2s=5.675E	28Mg Jpi=0+ T1/2s=7.528E	29Mg Jpi=3/2+ T1/2s=1.300E	30Mg Jpi=0+ T1/2s=3.350E	31Mg T1/2s=2.300E	32Mg Jpi=0+ T1/2s=1.200E	33Mg T1/2s=9.000E	34Mg Jpi=0+ T1/2s=2.000E	35Mg
18Na	19Na	20Na _{Jpi=2+} T1/2s=4.479E	21Na Jpi=3/2+ T1/2s=2.249E	22N Jpi=3+ T1/2 =8.211E	23Na _{Jpj=3/2+} T1/2s>1.000E	24Na Jpi=4+ T1/2s=5.385E	25Na Jpi=5/2+ T1/2s=5.910E	26Na _{Jpj=3+} Tl/2s=1.072E	27Na Jpi=5/2+ T1/2s=3.010E	28Na Jpi=1+ T1/2s=3.050E	29Na Joi=3/2 T1/2s=4.490E	30Na J _{Dj=2+} T1/2s=4.800E	31Na Jpi=3/2+ T1/2s=1.700E	32Na Jpi=(3-,4-) T1/2s=1.320E	33Na T1/2s=8.200E	34Na T1/2s=5.500
17Ne Jpi=1/2- T1/2s-1.092E	18Ne Jpi=0+ T1/2s-1.672E	19Ne Jpi=1/2+ T1/2s=1.722E	20N Jpi=0+ T1/2 >1.000E	21Ne Jpi=3/2+ T1/2s>1.000E	22Ne Jpi=0+ T1/2s>1.000E	23Ne Jpi=5/2+ T1/2s=3.724E	24Ne Jpi=0+ T1/2s-2.028E	25Ne Jpi=(1/2,3/2)+ T1/2s-6.020E	26Ne Jpi=0+ T1/2s-1.970E	27Ne T1/2s=3.200E	28Ne Jpi=0+ T1/2s=1.700E	29Ne T1/2s=2.000E	30Ne _{Jpi=0+}	31Ne	32Ne Jpi=0+	23
16F Jpi-0- T1/2s=1.645E	17F Jpi=5/2+ T1/2s=6.449B	18F Jpi=11 T1/2 =6.586F	19F Jpi-1/21 T1/2s>1.000E	20F Jpi=21 T1/2s=1.100E	21F Jpi-5/21 T1/2s=4.158H	22F Jpi=41,(31) T1/2s=4.230E	23F Jpi=(3/2,5/2)+ T1/2s=2.230E	24F Jpi=(1,2,3)1 T1/2s=3.400E	25F T1/2s=5.900E	26F	27F	28F	29F	21	22	
150 Jpi=1/2- T1/2s=1.222E	160 Jpi=0+ T1/2 > 1.000E	170 Jpi=5/2+ T1/2s>1,000E	180 Jpi=0+ T1/2s>1.000E	190 Jpi=5/2+ T1/2s=2.691E	200 Jpi=0+ T1/2s=1.351E	210 Jpi=(1/2,3/2,5, T1/2s=3,420E	220 Jpi=0+ T1/2s=2.250E	230 T1/2s=8.200F/	240 Jpi=0+ T1/2s=6.100E	250	260	19	20]		
14N Joi=1+ T1/2->1.000E	15N Jpi=1/2- T1/2s>1.000E	16N Jpi=2- T1/2s=7.130E	17N Jpi=1/2- T1/2s=4.173E	18N Jpi=1- T1/2s=6.240E	19N Jpi=(1/2-) T1/2s=3.040E	20N T1/2s=1.000E	21N T1/2s=8.500E	22N T1/2s=2.400E	23N	24N	18					
13C Jpi-1/2- T1/2s>1.000E	14C Jpi-0+ T1/2s=1.808E	15C Jpi=1/2+ T1/2s=2.449E	16C Jpi-0+ T1/2s=7.470E	17C T1/2s-1.930E	18C Jpi-0+ T1/2s=9.500E	19C T1/2s-4.600E	20C Jpi-0+ T1/2s=1.400E	21C	22C _{Jpi-0+}	17]					

Odd-odd N=Z sd-shell nuclides

N=Z

IS

Na

16Ne

15F

140

13N

16F

14 N

- Networks of (p,γ) and (p,α) reactions (beta decays omitted) in novae
- (p,γ) on odd-odd N = Z nuclides particularly important
 - bottleneck reactions

CAK RIDGE

National Laboratory

- impact on astronomical observables
- Many have long-lived spin isomers that can play roles in reaction networks (astromers)

S	pecies	t(Gs)	†(ıs)	J ^π (GS)	J ^π (IS)	
_	²² Na	2.6 y	240 ns	3+	1+	
_	²⁴ Al	2 s	130 ms	4+	1+	
_	²⁶ Al	0.7 My	6.3 s	5+	0+	
_	³⁰ P	2.5 m	96 fs	1+	0+	
_	³⁴ Cl	1.5 s	32 m	0+	3+	
_	³⁸ K	6.7 m	0.9 s	3+	0+	
_	⁴² Sc	0.7 s	1 m	0+	7+	

Odd-odd N=Z nuclides - isomers

N=Z

Na

16Ne

1/2s=5.395E

15F

140

13N

- Networks of (p,γ) and (p,α) reactions (beta decays omitted) in novae
- (p, γ) on odd-odd N = Z nuclides
 - bottleneck reactions
 - impact on astronomical observables
- Reaction networks
 - independent
 - or thermal coupling at high T
- Want reaction rates on both GS ^{IS} and IS
 - v. different SP structure, limited expt
 - sdpf states
- General rule
 - Insufficient beam intensities for direct (p,γ) measurements currently (some at FRIB)
- indirect techniques within reach
 OAK RIDGE
 National Laboratory

Transfer reactions on isomeric beams at FRIB

- Unique design of FRIB gives opportunities for producing beams of long-lived (>ms) nuclear isomers at ideal beam energies/optics for transfer reactions - ReA
- Produce GS and IS with fragmentation, reaccelerate
- Control the ground:isomer composition via
 - selection of production yields, via fragment separator (spin, though not specifically that of final state)
 - Adjustment of hold-up times inherent to ReA (lifetimes)

- Transfer, charge-exchange, Coulex,... for structure/indirect astrophysics (ORRUBA, SOLARIS, GODDESS, GRETA, LENDA, SeGA, Clarion2,)
- Direct measurements of astrophysical reactions [eg (p,g) with SECAR, or (a,p) (a,n) with JENSA, MUSIC, HabaNERO, ...]

Previous and upcoming isomer expts

21

Nova nucleosynthesis ^{34g,m}Cl(d,p) FRIB PAC1 approved

Indirect constraints on (p,γ) reactions

- Dominated by isolated resonances (some too low for direct measurements)
- Locate states E_r
- To constrain resonance strength, determine:
 - Spins
 - ℓ_{ρ} (constrains barrier, Γ_{sp})
 - Determine reduced width (10²) $\Gamma_p = C^2 S. \Gamma_{sp}$

1e-06

1e-07

200

400

 E_{u} (keV)

600

 $\Gamma_{v}(E1)$

 $--- \Gamma_{v}(M1)$

1000

What can we learn from transfer?

- Proton transfer ideal (d,n) or (³He,d)
 - Selectivity
 - Energies 10s of keV
 - *l*_p
 - *C*²*S*
- Experimental challenges
 - Neutron detection
 - Inclusive measurements
 - Gamma tagging
 - Non-spin-zero ground/isomeric states

 $\Gamma_p = C^2 S. \Gamma_{sp}$

 $\omega \gamma \approx \omega \Gamma_p$

- ³He targets
- Infer C²S for *single-proton states* via *mirror symmetry* $C^{2}S_{p} \approx C^{2}S_{n}$
 - Guide by SMEC
 - 10-20% effect

²⁶Al(d,p)²⁷Al experiment

- 4.5 MeV/u ²⁶Al (Oak Ridge Tandem)
- 5x10⁶ pps
- 150 μg/cm² CD₂
- MCP normalization (200 kHz)
- •Large Q value = low kinematic compression

²⁶Al *sd*-shell states

What to expect?

fp-shell excitations at higher E_x

 $J_t - j \leq J_f \leq J_t + j$

26

What to expect?

- sd-shell excitations
- *fp*-shell excitations at higher E_x

 $J_t - j \leq J_f \leq J_t + j$

²⁶AI(d,p)²⁷AI angular distributions

total

s wave

p wave

d wave fwave

Important for quality analysis of transfer data

- Good coverage of first stripping peak
- ADWA
- Finite Range (d and T)
- KD nucleon-nucleus **OMPs**
- Standard geometry parameters

Comparison with USDB - energies

Using NuShellX@MSU

30

- Calculated the first 40 states of each positive parity (5/2+ -17/2+) in ²⁷Al (dim 80,000) and calculate overlaps with ²⁶Al 5+ ground state (dim 70,000) (few minutes with 6core/12-threads (280 states total)
- Match by comparing C²S and energy

Excellent agreement in energies

- Perhaps unsurprising, as USDb fitted to energy levels in the SD shell (608 states, 77 nuclei, incl ^{26,27}Al)
 - Only fitted up until J^π becomes ambiguous - typically around 6-7 MeV
 - Agreement up to 11 MeV in expt

FIG. 2. (Color) Number of states used for the USDA and USDB Hamiltonians for each nucleus.

Comparison with USDb

Macfarlane & French sum rules

$$N_h = \sum_{E} \frac{2J_f + 1}{2J_t + 1} C^2 S_{(d,p)}$$

$$N_n + N_h = 12$$
 (for sd shell)

- O Vacancies 7
- Occupancies 5
- O sd-shell space 12

Summary

- Impossibly broad scope of FRIB transfer reaction program - focus on a couple of unique opportunities
- Developments in SRM: (d,p) for (n,γ)
- Opportunities for (d,p) measurements at the \$800
 - strong beams in the mass ~80 region
 - discrete particle and particle-γ spectroscopy
 - New technique: SRM for CN neutron transfer using recoils, and γ s
 - Two approved experiments GODDESS+S800 upcoming
- Ability to produce high-quality Reacc. beams with controllable isomer content
 - Mirror studies for (p, γ) reactions on isomers, ultimately (p, γ) SECAR
 - Direct (α ,p) measurements (JENSA) on isomers, ultimately SECAR
 - Two approved ReA experiments ³⁴Cl(d,p) and ²⁶Al/²⁶Si(a,p)
 - expt/SM across the sd N=Z (^{22}Na , ^{30}P , $^{34g,m}Cl$, $^{26g,m}Al$, $^{38g,m}K$)

Thanks

ORRUBA, GODDESS, JENSA and SECAR Collaborations *Esp. H. Sims, A. Ratkiewicz, J.A. Cizewski*

ReA: A. Henriques, A. Lapierre, K. Lund, Y. Liu, S. Nash, C. Sumithrarachchi, A. Villari

