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• Transfer reactions for neutron capture

– Constraining n-capture/Surrogate reactions 
with fast beams

• Transfer reactions on isomers

– sd-shell nuclides

– Constraining proton capture [(d,p) for (p,g)]

– Direct (a,p) 

– Comparison with SM

FRIB TA Workshop, May 2023 Si detector array 
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• Level energies (few keV – hundreds keV, depending 
on reaction, beam and instrumentation)

• (Differential) cross sections

– transferred orbital angular momenta (parity, some J)

• Decay channels of excited states

– g spec 

– g/particle emission probabilities [discrete, or P(Ex)]

• Direct reaction analysis

– Spectroscopic factors (C2S)

• Structure

• Astrophysics

• Surrogate reactions

Transfer reaction observables Selective of particle/hole states

• Stripping reactions [eg (d,p) (d,n)] 
probe of single-particle excitations

• Pickup reactions [eg (p,d) (d,3He)] 
probe of hole excitations

• Spin through momentum matching 
(choice of probe, and beam energy)

Astrophysics

Level energies (exp. affect rates)

Spins (barrier penetrabilities – ell, not J, most 
important)

C2S

Constraints on LD/GSF – eg SRM

Preferentially populates particle excitations 
(depending on WF, may or may not see via 
other probes – beta decay, KO, etc)

Branching ratios 

Though direct measurements are goal, 
need to discover important states first by 
some other means
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Beam energy ~3-50 MeV/A

– Cross sections (absolute and differential)

– Beam intensity

– Kinematic compression

– Beam optics

– Special cases…

Transfer reactions at FRIB

10 MeV/A

45 MeV/A

Cannot cover all –
restrict to few 
examples of FRIB 
specific opportunities

Sn

Charged-particle arrays 
(HiRA, ORRUBA, …)

Si+Solenoid arrays (SOLARIS, 
HELIOS, ISIS)

Active targets (ATTPC)

n arrays (VANDLE. LENDA, 
NEXT, ODeSA, …)

Ge arrays (GRET(IN)A, 
SeGA, Clovers,…)

Detectors at FRIB

Gas jet targets (JENSA)

Devices often coupled to recoil 
separators (S800, SECAR, ISLA)
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Constraining neutron-capture cross sections

• Neutron capture can occur via resonances (eg

compound nucleus formation), and direct capture to 

bound states

• Depending on neutron level density/strong resonances, 

one or other may be dominant

• In general, need methods to constrain both
mechanisms

Neutron transfer reactions

• Selective (states with target+n wavefunctions)

• Give properties of bound states and isolated 

resonances (E, Jp, C2S)

• for DSD

• Constrain structure models

• Can be used as surrogate for CN capture (SRM)
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Constraining neutron-capture cross sections

• Neutron capture can occur via resonances (eg compound 

nucleus formation), and direct capture to bound states

• Depending on neutron level density, one or other may be 

dominant

• Ideally need methods to constrain both mechanisms

• Four strong single-

neutron levels above 

N=82 (new)

• Not populated in 

beta decay

R.L. Kozub et al, PRL 109 172501 (2012) 
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Constraining n-capture cross sections - DSD

• Four strong single-

neutron levels above 

N=82 (new)

• Not populated in 

beta decay

• Neutron capture can occur via resonances (eg compound 

nucleus formation), and direct capture to bound states

• Depending on neutron level density, one or other may be 

dominant

• Ideally need methods to constrain both mechanisms

R.L. Kozub et al, PRL 109 172501 (2012) 
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g

d p

95Mo(d,pg)96Mo

95Mo 96Mo*
96Mo

n

g

95Mo(n,g)96Mo

95Mo 96Mo*
96Mo

• Model reaction in HF formalism

• Essential theory components:

– Formation of CN (sCN) – simple

– Decay of CN (GCN) – complicated
(Escher)

– Need  to place experimental 
constraints on GCN

Figures and equations adapted from J.E. Escher et al. Rev. Mod. Phys. 84, 353 (2012).

• Model experimentally-determined 
Ppg(Eex) in HF formalism to constrain GCN

• Essential theory components:

– Decay of CN (GCN) – complicated (Escher)

– *Entry spin distribution (FCN) – complicated
(Potel)

A surrogate reaction forms the “same”* 
compound nucleus as the desired reaction

Constraining CN n-capture cross sections - SRM

https://link.aps.org/doi/10.1103/RevModPhys.84.353
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• Model reaction in HF formalism

• Essential theory components:

– Formation of CN (sCN) – simple

– Decay of CN (GCN) – complicated
(Escher)

– Need  to place experimental 
constraints on GCN

Figures and equations adapted from J.E. Escher et al. Rev. Mod. Phys. 84, 353 (2012).

• Model experimentally-determined 
Ppg(Eex) in HF formalism to constrain GCN

• Essential theory components:

– Decay of CN (GCN) – complicated (Escher)

– *Entry spin distribution (FCN) – complicated
(Potel)

A surrogate reaction forms the “same”* 
compound nucleus as the desired reaction

Core experimental technique

• Measure outgoing particles, using 
kinematics to determine entrance Ex

above Sn

• Measure g rays to determine Ppg

• Typically requires either a collecting 
transition, or an understanding of the g
decay scheme

Constraining CN n-capture cross sections - SRM

https://link.aps.org/doi/10.1103/RevModPhys.84.353
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*

*
Sn

Experimental signature

(d,p) as surrogate for (n,g)

d
p

g

Ratkiewicz et al., Phys. Rev. Lett. 122, 052502 (2019)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.052502
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(d,p) as surrogate for (n,g)
Spin distributions

G. Potel

*

*
Sn

Experimental signature

Ratkiewicz et al., Phys. Rev. Lett. 122, 052502 (2019)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.052502
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Expt. challenges moving to RIB experiments

– Resolution (target thickness, kinematic 
compression) (~100 keV –> 500-1000 keV)

– Contaminants (eg carbon in target – however, 
only need to address this ‘once’ – not a surprise 
every time)

– Luminosity (beam intensity) – statistics-limited 
measurements

– Limitation on nuclides that can be practically 
studied

• Nuclides without a reasonably-collecting transitions are 
very challenging - complex g decay schemes disperses 

strength over numerous g transitions 

• Isomers (moving with beam) lead to unobserved gamma 
emissions

An alternative technique – uniquely suited to 
FRIB…

SRM outlook…
• SRM Progress

– Validation of (d,pg) as surrogate for (n, g)

• understanding Jp formation distributions key ingredient

– Development of (p,d) as (n, g) surrogate

– Ongoing development of (p,p’) as (n, g) surrogate

– What are the limits of the statistical approach…

– More from Jutta next week…

J.E. Escher et al., PRL 121 052501 (2018)
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A new technique with RIBs

A1900

84Se(d,p)85Se 

reaction

84Se

Focal plane 

position

Three responses in the FP

1. 84Se unreacted beam
2. 85Se recoils from (d,p)
3. 84Se after n emission 

from 85Se recoil

To bound states
84Se(d,p)85Se*(g)85Se

To unbound states

• 84Se(d,p)85Se*(g)85Se
• 84Se(d,p)85Se*(n)84Se

Developed in NSCL 
84Se(d,p)85Se experiment

H. Sims, S.D.Pain, J.A. 

Cizewski, A. Ratkiewicz, 

et al.,

…detect the recoiling nucleus to determine if decayed by n or g

Use charged-particle [e.g (d,p)] to determine the formation 

Ex(as before)
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A new technique with RIBs

A1900

84Se(d,p)85Se 

reaction

84Se

Focal plane 

position

Three responses in the FP

1. 84Se unreacted beam
2. 85Se recoils from (d,p)
3. 84Se after n emission 

from 85Se recoil

…detect the recoiling nucleus to determine if decayed by n or g

Use charged-particle [e.g (d,p)] to determine the formation 

Ex(as before)

To bound states
84Se(d,p)85Se*(g)85Se

To unbound states

• 84Se(d,p)85Se*(g)85Se
• 84Se(d,p)85Se*(n)84Se

H. Sims, S.D.Pain, J.A. 

Cizewski, A. Ratkiewicz, 

et al.,

Developed in NSCL 
84Se(d,p)85Se experiment
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An alternative with RIBs…

Advantages

• concentrates all statistics in a single observable

• high (25-50%), simple and experimentally-

determinable detection efficiency (cf g

cascades)

• Enables measurements on (almost) any nucleus 

on same footing

Challenges

• need careful characterization of BG reactions 

on C in target Work ongoing with Jutta to extract (n,g) cross section

H. Sims,

J.A. Cizewski,

S.D.Pain,

A. Ratkiewicz,

et al.,

Ex
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Unique opportunity at FRIB
Combination

• FRIB n-rich beams

• S800

• GODDESS [ORRUBA+GRET(IN)A]

Two approved experiments

• 80Ge (Sims, Grinder, Cizewski, Pain, et al) 

– weak r process

• 75Ga (Pain, Balakrishnan, et al)                   

– i-process

Cannot measure all; target specific 

interesting cases

Ideally like to have (empirical) predictive 

model of (n,g) cross sections

- Model constrained by experiment in 

sensitive cases?

Detect protons, gammas and recoils 

• Discrete particle-g spectroscopy

• SRM with recoils 

• SRM with g
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• Reaction models

• Lower-end of well-constrained 
nucleon-nucleus global potentials 
(near stability)

• ADWA vs DWBA?

• Finite range effects?

• …

• Beautiful experiments

• Astrophysical motivationN = Z

• Testing ground of LBSM calculations

– Wealth of experimental data (near 
stability)

– Well-constrained interactions for sd states 
(eg USDb)

– Mid shell

• highly mixed states

• non-zero Jp ground states

• non-spherical systems

– How well are fp excitations described?

Transfer on sd nuclei
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• Networks of (p,g) and (p,a) reactions 
(beta decays omitted) in novae

• (p,g) on odd-odd N = Z nuclides 
particularly important

– bottleneck reactions

– impact on astronomical observables

• Many have long-lived spin isomers that 
can play roles in reaction networks 
(astromers)

Species     t(GS)      t(IS)       Jp(GS)  Jp(IS)

– 22Na        2.6 y     240 ns      3+  1+

– 24Al            2 s      130 ms 4+ 1+

– 26Al      0.7 My      6.3 s        5+ 0+

– 30P         2.5 m      96 fs        1+ 0+

– 34Cl         1.5 s       32 m       0+ 3+

– 38K         6.7 m       0.9 s       3+  0+

– 42Sc        0.7 s        1 m        0+       7+

Odd-odd N=Z sd-shell nuclides

IS

N=Z
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• Networks of (p,g) and (p,a) reactions 
(beta decays omitted) in novae

• (p,g) on odd-odd N = Z nuclides

– bottleneck reactions

– impact on astronomical observables

• Reaction networks

– independent

– or thermal coupling at high T

• Want reaction rates on both GS  
and IS

– v. different SP structure, limited expt

– sdpf states

• General rule

– Insufficient beam intensities for                      
direct (p,g) measurements currently            
(some at FRIB)

– indirect techniques within reach

Odd-odd N=Z nuclides - isomers

IS

N=Z
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Transfer reactions on isomeric beams at FRIB

• Unique design of FRIB gives opportunities for producing beams of long-lived (>ms) 
nuclear isomers at ideal beam energies/optics for transfer reactions - ReA

• Produce GS and IS with fragmentation, reaccelerate

• Control the ground:isomer composition via

– selection of production yields, via fragment separator                                                                       
(spin, though not specifically that of final state)

– Adjustment of hold-up times inherent to ReA (lifetimes)

K.A. Chipps et al., Phys. Rev. Acc. and Beams 21, 121301 (2018)

38K

GS         3+ t1/2 ~ 7.6 min
Isomer  0+ (130 keV)   t1/2 ~ 1 sec

Selection by charge-breeding

Selection on production

• Transfer, charge-exchange, Coulex,… for 
structure/indirect astrophysics (ORRUBA, 
SOLARIS, GODDESS, GRETA, LENDA, 
SeGA, Clarion2, ….)

• Direct measurements of astrophysical 
reactions [eg (p,g) with SECAR, or (a,p) 
(a,n) with JENSA, MUSIC, HabaNERO, …]
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Excitation energy (MeV)         

[GS + isomer]
[GS ‘only’] scaled by # 

incident 38K GS ions

0         2         4         8         6         

Difference = isomer 

contribution

A
STR

O

38g,mK(d,p) run ReA@NSCL 2020

34g,mCl(d,p) FRIB PAC1 approved

26mAl(a,p) FRIB PAC2 approved
26gAl(a,p) run ReA 2022

Previous and upcoming isomer expts
Nova nucleosynthesis

Direct 
measurements 
for XRB and SN 
nucleosynthesis
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Indirect constraints on (p,g) reactions

• Dominated by isolated resonances (some 

too low for direct measurements)

• Locate states Er

• To constrain resonance strength, determine:

• Spins

• ℓp (constrains barrier, Γ𝑠𝑝)

• Determine reduced width (102)
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low-energy limit
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What can we learn from transfer?
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Γ𝑝 ≪ Γ𝛾
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• Proton transfer ideal (d,n) or (3He,d)

• Selectivity

• Energies 10s of keV

• ℓp

• C2S

• Experimental challenges

• Neutron detection 

• Inclusive measurements

• Gamma tagging

• Non-spin-zero ground/isomeric 
states 

• 3He targets

• Infer C2S for single-proton states via 
mirror symmetry

• Guide by SMEC

• 10-20% effect

26Al 27Al

27Si

𝐶2𝑆𝑝 ≈ 𝐶
2𝑆𝑛

Γ𝑝 = 𝐶2𝑆. Γ𝑠𝑝

𝜔𝛾 ≈ 𝜔Γ𝑝 Benchmark against 26Al(p,g)…
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26Al(d,p)27Al experiment

• 4.5 MeV/u 26Al (Oak Ridge Tandem)

• 5x106 pps

• 150 g/cm2 CD2

• MCP normalization (200 kHz)

(d,p) ~75 keV resolution

26Al(d,p)

Qgs = 10.8 MeV

•Large Q value = low kinematic compression 
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8

20

1s1/2

1p3/2

1p1/2

1d5/2

2s1/2

1d3/2

2p3/2

2p1/2

1f5/2

1f7/2

2

4

2

6

2

4

8

4

2

6

26Al sd -shell states

Holes            7

Neutrons        5

Occupancy   12

n

n

5+

9/2+

11/2+

9/2+

11/2+

7/2+

13/2+

9/2+

11/2+

7/2+

13/2+

5/2+

15/2+

s1/2

d3/2

d5/2

What to expect?

• sd-shell excitations

• fp-shell excitations at 
higher Ex

Jt = Jf

ℓj

Jt - j  ≤  Jf ≤  Jt + j
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1s1/2

1p3/2

1p1/2

1d5/2

2s1/2

1d3/2

2p3/2

2p1/2

1f5/2

1f7/2

2

4

2

6

2

4

8

4

2

6

What to expect?

• sd-shell excitations

• fp-shell excitations at 
higher Ex

26Al fp -shell states

n

n

5+

9/2-

11/2-

9/2-

11/2-

7/2-

13/2-

9/2-

11/2-

7/2-

13/2-

5/2-

15/2-

p1/2

p3/2

f5/2

9/2-

11/2-

7/2-

13/2-

5/2-

15/2-

f7/2

3/2-

17/2-

Jt = Jf

ℓj

Jt - j  ≤  Jf ≤  Jt + j



27

26Al(d,p)27Al angular distributions
total
s wave
p wave
d wave
f wave
Important for quality 
analysis of transfer data

• Good coverage of first 
stripping peak

• ADWA

• Finite Range (d and T)

• KD nucleon-nucleus 
OMPs

• Standard geometry 
parameters
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Resonance strengths from (d,p)

Sp

127

68

189

276

369

241

231

A
G

B
 +

 W
R

N
o
v
a
e

7832

7739

7704/7694

7652

7590

7532

8046

7950

7900

7807

7790

7722

7998

9/2+

9/2+

9/2+

11/2-

7/2-

9/2+

5/2+

5/2+

27Si
27Al

9/2+

7/2-

5/2+
11/2-

9/2+

5/2+
Direct (p,g) NK
Direct (p,g) IVK
26Al(3He,d)27Si
26Al(d,p)27Al

Bound

Resonances

SMEC gives ~10-20% 
reduction in C2S for 
27Si unbound states

Mirror assignments from

G. Lotay et al, PRC 34 035802 (2011)
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Resonance strengths

109 pps
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Comparison with USDB - energies Excellent agreement in energies

• Perhaps unsurprising, as USDb fitted to 
energy levels in the SD shell (608 
states, 77 nuclei, incl 26,27Al)

• Only fitted up until Jp becomes 
ambiguous - typically around 6-7 
MeV 

• Agreement up to 11 MeV in expt

• Using NuShellX@MSU

• Calculated the first 40 states of each positive parity (5/2+ -
17/2+) in 27Al (dim 80,000) and calculate overlaps with 
26Al 5+ ground state (dim 70,000) (few minutes with 6-
core/12-threads (280 states total)

• Match by comparing C2S and energy  
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Comparison with USDb

Vacancies         7

Occupancies    5

sd-shell space  12

𝑁ℎ =෍

𝐸

2𝐽𝑓 + 1

2𝐽𝑡 + 1
𝐶2𝑆(𝑑,𝑝)

Macfarlane & French sum rules

𝑁𝑛 + 𝑁ℎ = 12 (for sd shell)
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• Impossibly broad scope of FRIB transfer reaction 
program - focus on a couple of unique opportunities 

• Developments in SRM: (d,p) for (n,g)

• Opportunities for (d,p) measurements at the S800

– strong beams in the mass ~80 region

– discrete particle and particle-g spectroscopy

– New technique: SRM for CN neutron transfer using recoils, and gs

– Two approved experiments GODDESS+S800 upcoming 

• Ability to produce high-quality Reacc. beams with 
controllable isomer content

– Mirror studies for (p, g) reactions on isomers, ultimately (p, g) 
SECAR

– Direct (a,p) measurements (JENSA) on isomers, ultimately SECAR

– Two approved ReA experiments – 34Cl(d,p) and 26Al/26Si(a,p)

– expt/SM across the sd N=Z (22Na, 30P, 34g,mCl, 26g,mAl, 38g,mK) 

Summary

Si detector array 

ORRUBA, GODDESS, JENSA 
and SECAR Collaborations
Esp. H. Sims, A. Ratkiewicz,   
J.A. Cizewski

ReA: A. Henriques, A. Lapierre,   
K. Lund, Y. Liu, S. Nash,                  
C. Sumithrarachchi, A. Villari

Thanks


