

A Quick Overview of Some Microscopic Approaches to Nuclear Reactions

Alexis Mercenne Louisiana State University

Alexis Mercenne – FRIB Topical Program

Theoretical Description of Exotic Nuclei

D. Bazin et al., *arXiv:2211.06281*

New features:

- Open quantum systems.
- Unstable: short life time, decay through nucleon emission.
- Threshold emissions.
- Loosely bound states.
- Resonances.

May 2023

Alexis Mercenne – FRIB Topical Program

399

Few-body vs Many-body approaches: Unification of Structure and Reactions

Few-body approach:

- Simpler calculations: two- or three-body generally.
- Optical potentials: imaginary part to mimic the effect of inelastic channels; parameters are fitted on data.
- Allows to study many types of reaction across the nuclear chart.
- Many approaches are now developing optical potentials from microscopic calculations.

C. Hebborn et al., J. Phys. G: Nucl. Part. Phys. 50 060501 (2023)

We eventually want to implement reactants wave functions

May 2023

Many-body approach:

- Structure of reactants play an important role.
- Complexity increases fast with light projectile and multi-partition calculations.

Alexis Mercenne – FRIB Topical Program

Ab Initio Wave Functions for Nuclear Reactions

Symmetry-adapted No-core Shell Model

- *Ab initio*: no-core shell model calculations, chiral EFT interactions.
- Physically relevant basis states: better captures collectivity.
- Selection of the most important basis states: capture relevant correlation.
- Manageable model space, can push further the limit of *ab initio* calculations.

SA-NCSM wave function

Ab Initio Overlap Functions

• Relevant for astrophysics: Triggers CNO-cycle breakout.

- Rate uses narrow-resonance formula, deduced the matching with asymptotic scattering w.f.
- Calculated rate is a many order of magnitude smaller than evaluated.

Alexis Mercenne – March 30, 2022

Optical Potential Derived from Ab Initio Calculations

- ⁴He wave function calculated with SA-NCSM. ٠
- Optical potential describing neutron scattering on ٠ ⁴He constructed with Green's function method.

Matthew Burrows and Kristina Launey, preliminary results

May 2023

Alexis Mercenne – FRIB Topical Program

8

10 0

(b)

Coupled-channels Framework for Nuclear Reactions

Can be solved with calculable R-matrix.

a.k.a optical potential, intercluster interaction, nucleonnucleus potential ...etc

A basis for reactions: channel index gathers partitions, quantum numbers of projectile and target, total angular momentum of composite ...etc $c = \{A \ I_T; a \ I_p; n\ell j; J\}$

Low Energy Reactions With the Resonating Group Method (RGM)

8

- u_c(r) describes the relative motion between the two clusters.
- Asymptotic of u_c(r) gives cross section for specific channel.
- Requires internal wave functions and NN interaction.
- Microscopic: full antisymmetrization + cluster correlations.
- Can be generalized to any number of clusters.

$$c = \{A \ I_T; a \ I_p; n\ell j; J\}$$

Alexis Mercenne

Implementing Shell-model Wave Functions into Reactions

Schematic interaction. ٠

•

٠

٠

Ab Initio Nuclear Reactions with Nuclei Up to Medium-mass Region

Symmetry-adapted RGM:

Ab initio single-nucleon projectile reactions in a coupled-channel framework.

 ${}^{2}P_{3/2}$

 ${}^{2}S_{1/2}$

X 6.0

 20 Ne(g.s.)+n NNLO_{opt}

5

X 2.5

First results studied the influence of selected model space on non-local potentials.

c)

d)

7

6

8

 $\delta[deg]$

r (fm)

0

1

2

3

4

 $r(\mathrm{fm})$

0.0-2.5

-5.0-7.5

 $\begin{array}{c} & \sum_{cc} -10.0 \\ V_{cc}^{(1)}(r' = 10, r') \\ -12.5 \\ -12.0 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -20 \\ -30$

-40

-50

-60

Exotic ¹⁵F Studied Through p+ ¹⁴O With Gamow Shell Model Coupled Channel

Goal : Study the structure of 15 F through the elastic cross section p+ 14 O

Motivation: ¹⁵F is unbound, several measured narrow resonances located well above the Coulomb plus centrifugal barrier.

Schematic interaction (FHT) is fitted using GSM to reproduce the low lying states of ¹⁴O and ¹⁵F

Astrophysics: Properties of ¹⁵F, and proton riche systems in general, play an important role in rp-process .

Alexis Mercenne – March 30, 2022

Exotic ¹⁵F Studied Through p+ ¹⁴O With Gamow Shell Model Coupled Channel

V. Girard-Alcindor, A. Mercenne et al., PRC 105, L051301 (2022)

Multi-partition Reactions for ⁷Li, ⁷Be and ⁸Be With GSM-CC

⁷Li

⁴He core + valence particles. Same Hamiltonian to describe ⁷Be and ⁷Li. Performed GSM (Slater determinant basis) and GSM-CC (channel basis) calculations. Schematic interaction fitted to reproduced low-lying spectra of reactants.

Alexis Mercenne – March 30, 2022

Multi-partition Reactions for ⁷Li, ⁷Be and ⁸Be With GSM-CC

$$|\Psi\rangle = \sum_{c} \int dr \frac{u_{c}(r)}{r} r^{2} \mathcal{A} \left\{ \underbrace{\mathbf{P}}_{\mathbf{P}} \stackrel{\vec{r}}{\rightarrow} \mathbf{P} \right\}$$

- RGM can tell us more than cross sections.
- Enhancement of the scattering cross section at the threshold energies where new channels open: Wigner cusps.

May 2023

Multi-partition Reactions for ⁷Li, ⁷Be and ⁸Be With GSM-CC

Alexis Mercenne – FRIB Topical Program

May 2023

Summary

- You can already do "reactions" with a structure approach: overlap function can help to calculate reaction rates.
- Structure wave functions are becoming a necessary ingredient for low energy nuclear reactions:
 - To construct optical potentials (i.e. with Green's function method)
 - For RGM-based approach to coupled-channel calculations.
- Cross sections are the observables that will have the most impact for advancing the science in connection with these theoretical methods.
- Future advances:

May 2023

- Uncertainty quantification, especially on models that depend upon fitting an interaction.
- Pushing further *ab initio* reactions with multi-partition calculations.