Perturbation calculations in Nuclear Lattice EFT

Yuanzhuo Ma^{1,2}

Nuclear Lattice EFT Collaboration

¹Facility for Rare Isotope Beams, Michigan State University ²Institute of quantum matter, South China Normal University

Outline

- Brief introduction to Nuclear Lattice EFT
 - "Sign problem" & SU(4) symmetry
- Perturbation on Lattice:
 - Wave function matching Hamiltonian (Dean's talk)
 - 1st order perturbation to wave function
 - Rank-One operator method
- Recent progress I: Neutron matter structure factors
- Recent progress II: Charge Radii (ongoing)
- Summary & Outlook

Introduction Perturbation on Lattice NM structure factors Charge Radii

= Chiral Effective Field Theory

QCD and Nuclear physics can be linked by Chiral EFT

+ Quantum Monte Calo on Lattice

In principle, an exact solution for quantum many-body problem Polynomial scaling (~A²)

Review: Dean Lee, Prog. Part. Nucl. Phys. 63, 117 (2009), Lähde, Meißner, "Nuclear Lattice Effective Field Theory", Springer (2019)

Chiral Effective Field Theory Quantum Monte Calo on Lattice + QCD and Nuclear physics can be linked by Chiral EFT Energy scales and relevant degrees of freedom **Degrees of Freedom** Energy (MeV) Physics of Hadrons Lattice QCD 940 D neutr Chiral EFT 140 pion mass Energy or Resolution π $a \sim 0.5-2 \text{ fm}$ Pion-less EFT p Physics of Nuclei 8 UV cutoff $\Lambda = -\frac{\pi}{2}$ proton separation energy in lead EFT for nu In the same framework vibrations 1.12 vibrational state in tir EFT for deformed nuclei In principle, an exact solution for quantum many-body problem 0.043 rotational Polynomial scaling (~A²) Fig.: Bertsch, Dean, Nazarewicz (2007)

Review: Dean Lee, Prog. Part. Nucl. Phys. 63, 117 (2009), Lähde, Meißner, "Nuclear Lattice Effective Field Theory", Springer (2019)

Introduction Perturbation on Lattice NM structure factors Charge Radii

g. s. wave function from Euclidean time projection:

 $|\Psi_{g.s.}\rangle \propto \lim_{\tau \to \infty} \exp(-\tau H) |\Psi_A\rangle$

with $|\Psi_A
angle$ is an A-body trial wave function

g. s. wave function from Euclidean time projection:

 $|\Psi_{g.s.}\rangle \propto \lim_{\tau \to \infty} \exp(-\tau H) |\Psi_A\rangle$

with $|\Psi_A
angle$ is an A-body trial wave function

Expectation value of operators:

$$\left\langle \mathcal{O} \right\rangle = \lim_{\tau \to \infty} \frac{\left\langle \Psi_A \left| e^{-\tau H/2} \mathcal{O} e^{-\tau H/2} \right| \Psi_A \right\rangle}{\left\langle \Psi_A \left| e^{-\tau H} \right| \Psi_A \right\rangle}$$
Amplitudes

g. s. wave function from Euclidean time projection:

 $|\Psi_{g.s.}\rangle \propto \lim_{\tau \to \infty} \exp(-\tau H) |\Psi_A\rangle$

with $|\Psi_A
angle$ is an A-body trial wave function

Expectation value of operators:

$$\langle \mathcal{O} \rangle = \lim_{\tau \to \infty} \frac{\left\langle \Psi_A \left| e^{-\tau H/2} \mathcal{O} e^{-\tau H/2} \right| \Psi_A \right\rangle}{\left\langle \Psi_A \left| e^{-\tau H} \right| \Psi_A \right\rangle}$$
Amplitudes

Euclidean time τ is discretized into time slices:

$$\exp(-\tau H) \simeq \left[: \exp\left(-\frac{\tau}{L_t}H\right):\right]^{L_t}$$

Auxiliary field Quantum Monte Carlo

Hubbard–Stratonovich transformation

Example:
$$H = \sum_{nn'} -\psi_n^{\dagger} \frac{\nabla_{nn'}^2}{2M} \psi_{n'} + C \sum_n : \left(\psi_n^{\dagger} \psi_n\right)^2 :$$
$$: \exp\left(-a_t H\right) := \int \prod_n ds_n : \exp\left[\sum_n \left(-\frac{s_n^2}{2} + a_t \psi_n^{\dagger} \sum_{n'} \frac{\nabla_{nn'}^2}{2M} \psi_{n'} + \sqrt{-a_t C} s_n \psi_n^{\dagger} \psi_n\right)\right] :$$

two-body interaction —> single particle in background fields

Introduction Perturbation on Lattice NM structure factors Charge Radii

Auxiliary field Quantum Monte Carlo

Hubbard–Stratonovich transformation

Example:
$$H = \sum_{nn'} -\psi_n^{\dagger} \frac{\nabla_{nn'}^2}{2M} \psi_{n'} + C \sum_n : \left(\psi_n^{\dagger} \psi_n\right)^2 : e^{\frac{1}{2}}$$
$$e^{\frac{1}{2}}$$
$$e^{\frac{1}{2}}$$
$$e^{\frac{1}{2}} \exp\left(-a_t H\right) := \int \prod_n ds_n : \exp\left[\sum_n \left(-\frac{s_n^2}{2} + a_t \psi_n^{\dagger} \sum_{n'} \frac{\nabla_{nn'}^2}{2M} \psi_{n'} + \sqrt{-a_t C} s_n \psi_n^{\dagger} \psi_n\right)\right] :$$

or Gaussian integral (Exact)

$$e^{\frac{b^2}{4a}+c} = \sqrt{\frac{a}{\pi}} \int_{-\infty}^{\infty} e^{-ax^2+bx+c} dx$$

two-body interaction -> single particle in background fields

Auxiliary field Quantum Monte Carlo

Hubbard–Stratonovich transformation

or Gaussian integral (Exact)

Example:
$$H = \sum_{nn'} -\psi_n^{\dagger} \frac{\nabla_{nn'}^2}{2M} \psi_{n'} + C \sum_n : (\psi_n^{\dagger} \psi_n)^2 : \qquad e^{\frac{b^2}{4a} + c} = \sqrt{\frac{a}{\pi}} \int_{-\infty}^{\infty} e^{-ax^2 + bx + c} dx$$
$$: \exp(-a_t H) := \int \prod_n ds_n : \exp\left[\sum_n \left(-\frac{s_n^2}{2} + a_t \psi_n^{\dagger} \sum_{n'} \frac{\nabla_{nn'}^2}{2M} \psi_{n'} + \sqrt{-a_t C} s_n \psi_n^{\dagger} \psi_n\right)\right] :$$

Antisymmetry from the determinant of correlation matrix $\langle \Psi_A | e^{-\tau H} | \Psi_A \rangle$

$$\det \begin{bmatrix} a_{11} & a_{12} & \dots \\ a_{21} & \ddots \\ \vdots & a_{AA} \end{bmatrix}$$

two-body interaction —> single particle in background fields

single particle amplitude $a_{ij} = \langle \phi_i | e^{-\tau H} | \phi_j \rangle$

Introduction Perturbation on Lattice NM structure factors Charge Radii

$$:\exp\left(-a_{t}H\right):=\int\prod_{n}ds_{n}:\exp\left[\sum_{n}\left(-\frac{s_{n}^{2}}{2}+a_{t}\psi_{n}^{\dagger}\sum_{n'}\frac{\nabla_{nn'}^{2}}{2M}\psi_{n'}+\sqrt{-a_{t}C}s_{n}\psi_{n}^{\dagger}\psi_{n}\right)\right]:$$

Introduction Perturbation on Lattice NM structure factors Charge Radii

$$:\exp\left(-a_{t}H\right):=\int\prod_{n}d\boldsymbol{s_{n}}:\exp\left[\sum_{n}\left(-\frac{\boldsymbol{s_{n}^{2}}}{2}+a_{t}\psi_{n}^{\dagger}\sum_{n'}\frac{\nabla_{nn'}^{2}}{2M}\psi_{n'}+\sqrt{-a_{t}\boldsymbol{C}}\boldsymbol{s_{n}}\psi_{n}^{\dagger}\psi_{n}\right)\right]:$$

If *C* is (-) attractive: real **Good**!

Introduction **Perturbation on Lattice** NM structure factors Charge Radii

$$:\exp\left(-a_{t}H\right):=\int\prod_{n}ds_{n}:\exp\left[\sum_{n}\left(-\frac{s_{n}^{2}}{2}+a_{t}\psi_{n}^{\dagger}\sum_{n'}\frac{\nabla_{nn'}^{2}}{2M}\psi_{n'}+\sqrt{-a_{t}C}s_{n}\psi_{n}^{\dagger}\psi_{n}\right)\right]:$$

If *C* is (-) attractive: real **Good**!

If *C* is (+) repulsive: complex phase -> cancellation in $\langle \mathcal{O} \rangle = \frac{\int \mathcal{D}s |\det \mathcal{M}_s(\mathcal{O})| \exp(i\theta[s])}{\int \mathcal{D}s |\det \mathcal{M}_s| \exp(i\theta[s])}$

Introduction **Perturbation on Lattice** NM structure factors Charge Radii

Sign problem

$$:\exp\left(-a_{t}H\right):=\int\prod_{n}d\boldsymbol{s_{n}}:\exp\left[\sum_{n}\left(-\frac{\boldsymbol{s_{n}^{2}}}{2}+a_{t}\psi_{n}^{\dagger}\sum_{n'}\frac{\nabla_{nn'}^{2}}{2M}\psi_{n'}+\sqrt{-a_{t}\boldsymbol{C}}\boldsymbol{s_{n}}\psi_{n}^{\dagger}\psi_{n}\right)\right]:$$

If *C* is (-) attractive: real **Good**!

If *C* is (+) repulsive: complex phase -> cancellation in $\langle \mathcal{O} \rangle = \frac{\int \mathcal{D}s \left| \det \mathcal{M}_s(\mathcal{O}) \right| \exp(i\theta[s])}{\int \mathcal{D}s \left| \det \mathcal{M}_s \right| \exp(i\theta[s])}$

Introduction **Perturbation on Lattice** NM structure factors Charge Radii

Sign problem

$$:\exp\left(-a_{t}H\right):=\int\prod_{n}d\boldsymbol{s_{n}}:\exp\left[\sum_{n}\left(-\frac{\boldsymbol{s_{n}^{2}}}{2}+a_{t}\psi_{n}^{\dagger}\sum_{n'}\frac{\nabla_{nn'}^{2}}{2M}\psi_{n'}+\sqrt{-a_{t}\boldsymbol{C}}\boldsymbol{s_{n}}\psi_{n}^{\dagger}\psi_{n}\right)\right]:$$

If C is (-) attractive: real Good!

If *C* is (+) repulsive: complex phase -> cancellation in $\langle \mathcal{O} \rangle = \frac{\int \mathcal{D}s \left| \det \mathcal{M}_s(\mathcal{O}) \right| \exp(i\theta[s])}{\int \mathcal{D}s \left| \det \mathcal{M}_s \right| \exp(i\theta[s])}$

But, if a Hamiltonian has Wigner's SU(4) symmetry:

Introduction Perturbation on Lattice NM structure factors Charge Radii

Sign problem

$$:\exp\left(-a_{t}H\right):=\int\prod_{n}ds_{n}:\exp\left[\sum_{n}\left(-\frac{s_{n}^{2}}{2}+a_{t}\psi_{n}^{\dagger}\sum_{n'}\frac{\nabla_{nn'}^{2}}{2M}\psi_{n'}+\sqrt{-a_{t}C}s_{n}\psi_{n}^{\dagger}\psi_{n}\right)\right]:$$

If C is (-) attractive: real Good!

If *C* is (+) repulsive: complex phase —> cancellation in

$$\langle \mathcal{O} \rangle = \frac{\int \mathcal{D}s \left| \det \mathcal{M}_s(\mathcal{O}) \right| \exp(i\theta[s])}{\int \mathcal{D}s \left| \det \mathcal{M}_s \right| \exp(i\theta[s])}$$

But, if a Hamiltonian has Wigner's SU(4) symmetry:

Dean Lee, PRL 98, 182501 (2007)

Introduction Perturbation on Lattice NM structure factors Charge Radii

Sign problem

$$:\exp\left(-a_{t}H\right):=\int\prod_{n}d\boldsymbol{s_{n}}:\exp\left[\sum_{n}\left(-\frac{\boldsymbol{s_{n}^{2}}}{2}+a_{t}\psi_{n}^{\dagger}\sum_{n'}\frac{\nabla_{nn'}^{2}}{2M}\psi_{n'}+\sqrt{-a_{t}\boldsymbol{C}}\boldsymbol{s_{n}}\psi_{n}^{\dagger}\psi_{n}\right)\right]:$$

If C is (-) attractive: real Good!

If C is (+) repulsive: complex phase -> cancellation in

$$\mathbf{n} \quad \langle \mathcal{O} \rangle = \frac{\int \mathcal{D}s \left| \det \mathcal{M}_s(\mathcal{O}) \right| \exp(i\theta[s])}{\int \mathcal{D}s \left| \det \mathcal{M}_s \right| \exp(i\theta[s])}$$

But, if a Hamiltonian has Wigner's SU(4) symmetry:

No sign problem !

Dean Lee, PRL 98, 182501 (2007)

Introduction Perturbation on Lattice NM structure factors Charge Radii

Sign problem

$$:\exp\left(-a_{t}H\right):=\int\prod_{n}d\boldsymbol{s_{n}}:\exp\left[\sum_{n}\left(-\frac{\boldsymbol{s_{n}^{2}}}{2}+a_{t}\psi_{n}^{\dagger}\sum_{n'}\frac{\nabla_{nn'}^{2}}{2M}\psi_{n'}+\sqrt{-a_{t}\boldsymbol{C}}\boldsymbol{s_{n}}\psi_{n}^{\dagger}\psi_{n}\right)\right]:$$

If C is (-) attractive: real Good!

If *C* is (+) repulsive: complex phase -> cancellation in $\langle \mathcal{O} \rangle = \frac{\int \mathcal{D}s |\det \mathcal{M}_s(\mathcal{O})| \exp(i\theta |s|)}{\int \mathcal{D}s |\det \mathcal{M}_s| \exp(i\theta |s|)}$

Real word is complex! realistic nuclear potential can cause severe sign problem

But, if a Hamiltonian has Wigner's SU(4) symmetry:

No sign problem !

Dean Lee, PRL 98, 182501 (2007)

Can we build a χ EFT Hamiltonian which is close to a SU(4) Hamiltonian?

Can we build a χ EFT Hamiltonian which is close to a SU(4) Hamiltonian?

Yes! Wave function Matching (Dean's Talk)

arXiv:2210.17488

Can we build a χ EFT Hamiltonian which is close to a SU(4) Hamiltonian?

Yes! Wave function Matching (Dean's Talk)

Can we build a χ EFT Hamiltonian which is close to a SU(4) Hamiltonian?

Yes! Wave function Matching (Dean's Talk)

Can we build a χ EFT Hamiltonian which is close to a SU(4) Hamiltonian?

Yes! Wave function Matching (Dean's Talk)

Perturbation Hamiltonian:

$$H_{\rm N3LO} \rightarrow H_{\rm SU(4)} + H_1$$

$$E_{\rm N3LO}^{\rm 1st} = \frac{\langle \Psi_{\rm SU(4)} | H_{\rm SU(4)} + H_1 | \Psi_{\rm SU(4)} \rangle}{\langle \Psi_{\rm SU(4)} | \Psi_{\rm SU(4)} \rangle}$$

Perturbation for wave function

Introduction Perturbation on Lattice NM structure factors Charge Radii

How about perturbation corrections to wave functions? $|\Psi
angle=|\Psi
angle^{(0)}+|\Psi
angle^{(1)}+\cdots$

Perturbation for wave function

Introduction Perturbation on Lattice NM structure factors Charge Radii

How about perturbation corrections to wave functions? $|\Psi\rangle = |\Psi\rangle^{(0)} + |\Psi\rangle^{(1)} + \cdots$

On lattice: det $\mathcal{M} = \langle \Psi_0 | \cdots : e^{-\Delta \tau (H_0 + H_1)} : \cdots : e^{-\Delta \tau (H_0 + H_1)} : \cdots | \Psi_0 \rangle$

Perturbation for wave function

Introduction Perturbation on Lattice NM structure factors Charge Radii

How about perturbation corrections to wave functions? $|\Psi\rangle = |\Psi\rangle^{(0)} + |\Psi\rangle^{(1)} + \cdots$

On lattice: det
$$\mathcal{M} = \langle \Psi_0 | \cdots : e^{-\Delta \tau (H_0 + H_1)} : \cdots : e^{-\Delta \tau (H_0 + H_1)} : \cdots | \Psi_0 \rangle$$

At 1st order level:

$$\begin{split} \langle \Psi_0 | : e^{-\Delta \tau H_0} : \cdots : e^{-\Delta \tau H_0} :: -\Delta \tau H_1 : |\Psi_0 \rangle \\ \langle \Psi_0 | : e^{-\Delta \tau H_0} : \cdots : -\Delta \tau H_1 :: e^{-\Delta \tau H_0} : |\Psi_0 \rangle \\ \vdots \\ \langle \Psi_0 | : -\Delta \tau H_1 :: e^{-\Delta \tau H_0} : \cdots : e^{-\Delta \tau H_0} : |\Psi_0 \rangle \end{split}$$

Bing-nan, Ning, Serdar, Yuan-zhuo, Dean, Ulf. PRL. 128, 242501 (2022)

Perturbation for operators

Introduction Perturbation on Lattice NM structure factors Charge Radii

Operators with perturbation corrections from wave functions

$$\langle \mathcal{O} \rangle = \frac{\langle \Psi | \mathcal{O} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\langle \Psi^{(0)} + \Psi^{(1)} + \dots | \mathcal{O} | \Psi^{(0)} + \Psi^{(1)} + \dots \rangle}{\langle \Psi^{(0)} + \Psi^{(1)} + \dots | \Psi^{(0)} + \Psi^{(1)} + \dots \rangle}$$

Perturbation for operators

Operators with perturbation corrections from wave functions

$$\langle \mathcal{O} \rangle = \frac{\langle \Psi | \mathcal{O} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\langle \Psi^{(0)} + \Psi^{(1)} + \dots | \mathcal{O} | \Psi^{(0)} + \Psi^{(1)} + \dots \rangle}{\langle \Psi^{(0)} + \Psi^{(1)} + \dots | \Psi^{(0)} + \Psi^{(1)} + \dots \rangle}$$

On Lattice:

$$\langle \mathcal{O} \rangle = \frac{\det \mathcal{M}_o^{(0)} + \det \mathcal{M}_o^{(1)}}{\det \mathcal{M}^{(0)} + \det \mathcal{M}^{(1)}} = \frac{\det \mathcal{M}_o^{(0)}}{\det \mathcal{M}^{(0)}} + \left(\frac{\det \mathcal{M}_o^{(1)}}{\det \mathcal{M}^{(0)}} - \frac{\det \mathcal{M}_o^{(0)} \det \mathcal{M}^{(1)}}{\det \mathcal{M}^{(0)} \det \mathcal{M}^{(0)}}\right) + \cdots$$
zeroth 1st order correction

Operators with perturbation corrections from wave functions

$$\langle \mathcal{O} \rangle = \frac{\langle \Psi | \mathcal{O} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\langle \Psi^{(0)} + \Psi^{(1)} + \dots | \mathcal{O} | \Psi^{(0)} + \Psi^{(1)} + \dots \rangle}{\langle \Psi^{(0)} + \Psi^{(1)} + \dots | \Psi^{(0)} + \Psi^{(1)} + \dots \rangle}$$

On Lattice:

$$\langle \mathcal{O} \rangle = \frac{\det \mathcal{M}_o^{(0)} + \det \mathcal{M}_o^{(1)}}{\det \mathcal{M}^{(0)} + \det \mathcal{M}^{(1)}} = \frac{\det \mathcal{M}_o^{(0)}}{\det \mathcal{M}^{(0)}} + \left(\frac{\det \mathcal{M}_o^{(1)}}{\det \mathcal{M}^{(0)}} - \frac{\det \mathcal{M}_o^{(0)} \det \mathcal{M}^{(1)}}{\det \mathcal{M}^{(0)} \det \mathcal{M}^{(0)}}\right) + \cdots$$
zeroth 1st order correction

Four types of amplitudes:

A: det
$$\mathcal{M}^{(0)} = \langle \Psi_0 |$$
 $| \Psi_0 \rangle$
B: det $\mathcal{M}^{(0)}_o = \langle \Psi_0 |$ $| \Psi_0 \rangle$
C: det $\mathcal{M}^{(1)} = 2 \sum_{k=0}^{L_t/2} \langle \Psi_0 |$ $| \Psi_0 \rangle$
B: det $\mathcal{M}^{(0)}_o = \langle \Psi_0 |$ $| \Psi_0 \rangle$
D: det $\mathcal{M}^{(1)}_o = 2 \sum_{k=0}^{L_t/2} \langle \Psi_0 |$ $| \Psi_0 \rangle$

 $L_{+}/2$

 M_0 M_1

Operators with perturbation corrections from wave functions

$$\langle \mathcal{O} \rangle = \frac{\langle \Psi | \mathcal{O} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\langle \Psi^{(0)} + \Psi^{(1)} + \dots | \mathcal{O} | \Psi^{(0)} + \Psi^{(1)} + \dots \rangle}{\langle \Psi^{(0)} + \Psi^{(1)} + \dots | \Psi^{(0)} + \Psi^{(1)} + \dots \rangle}$$

On Lattice:

$$\langle \mathcal{O} \rangle = \frac{\det \mathcal{M}_o^{(0)} + \det \mathcal{M}_o^{(1)}}{\det \mathcal{M}^{(0)} + \det \mathcal{M}^{(1)}} = \frac{\det \mathcal{M}_o^{(0)}}{\det \mathcal{M}^{(0)}} + \left(\frac{\det \mathcal{M}_o^{(1)}}{\det \mathcal{M}^{(0)}} - \frac{\det \mathcal{M}_o^{(0)} \det \mathcal{M}^{(1)}}{\det \mathcal{M}^{(0)} \det \mathcal{M}^{(0)}}\right) + \cdots$$
zeroth 1st order correction

Four types of amplitudes:

A: det
$$\mathcal{M}^{(0)} = \langle \Psi_0 |$$
 $\Psi_0 \rangle$
B: det $\mathcal{M}^{(0)}_o = \langle \Psi_0 |$ $\Psi_0 \rangle$
Jacobi formula
C: det $\mathcal{M}^{(1)}_o = 2 \sum_{k=0}^{L_t/2} \langle \Psi_0 |$ $\Psi_0 \rangle$
 $M_0 M_1$

 $I_{...}/2$

Operators with perturbation corrections from wave functions

$$\langle \mathcal{O} \rangle = \frac{\langle \Psi | \mathcal{O} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\langle \Psi^{(0)} + \Psi^{(1)} + \dots | \mathcal{O} | \Psi^{(0)} + \Psi^{(1)} + \dots \rangle}{\langle \Psi^{(0)} + \Psi^{(1)} + \dots | \Psi^{(0)} + \Psi^{(1)} + \dots \rangle}$$

On Lattice:

$$\langle \mathcal{O} \rangle = \frac{\det \mathcal{M}_o^{(0)} + \det \mathcal{M}_o^{(1)}}{\det \mathcal{M}^{(0)} + \det \mathcal{M}^{(1)}} = \frac{\det \mathcal{M}_o^{(0)}}{\det \mathcal{M}^{(0)}} + \left(\frac{\det \mathcal{M}_o^{(1)}}{\det \mathcal{M}^{(0)}} - \frac{\det \mathcal{M}_o^{(0)} \det \mathcal{M}^{(1)}}{\det \mathcal{M}^{(0)} \det \mathcal{M}^{(0)}}\right) + \cdots$$
zeroth 1st order correction

Four types of amplitudes:

A: det
$$\mathcal{M}^{(0)} = \langle \Psi_0 |$$

B: det $\mathcal{M}^{(0)}_o = \langle \Psi_0 |$
Jacobi formula
 $|\Psi_0 \rangle$
C: det $\mathcal{M}^{(1)}_o = 2 \sum_{k=0}^{L_t/2} \langle \Psi_0 |$
D: det $\mathcal{M}^{(1)}_o = 2 \sum_{k=0}^{L_t/2} \langle \Psi_0 |$
 $|\Psi_0 \rangle$
 $|\Psi_0 \rangle$
 $|\Psi_0 \rangle$
 $|\Psi_0 \rangle$

 $L_{1}/2$

Rank-one operator:

$$\mathcal{O}_{ij}^{I} \equiv F_{ij}^{\dagger}F_{ij}$$
 with ij is isospin and spin, and $F_{ij}^{\dagger} = \sum_{\vec{n}} a_{ij}^{\dagger}(\vec{n})f_{ij}^{*}(\vec{n})$, $F_{ij} = \sum_{\vec{n}} a_{ij}(\vec{n})f_{ij}(\vec{n})$

- a) When acting on a single particle state, higher rank of $F_{ij}^{\dagger}F_{ij}$ will vanish $:e^{cF_{ij}^{\dagger}F_{ij}}:=:1+cF_{ij}^{\dagger}F_{ij}:$
- b) Any operator can be decomposed into Rank-One operator $\mathcal{O} = \sum_{ij} \mathcal{O}_{ij}^{I}$
- c) The determinant of correlation matrix has a linear dependence property

Example:
$$\langle \Psi | : e^{cF_{\uparrow}^{\dagger}F_{\uparrow}} : |\Psi \rangle = \det \begin{bmatrix} c \cdot m_{\uparrow\uparrow} c \cdot m_{\uparrow\downarrow} \\ m_{\downarrow\uparrow} & m_{\downarrow\downarrow} \end{bmatrix} \begin{vmatrix} \uparrow \rangle \\ \downarrow \rangle = c[m_{\uparrow\uparrow}m_{\downarrow\downarrow} - m_{\uparrow\downarrow}m_{\downarrow\uparrow}] \\ \langle \uparrow | & \langle \downarrow | \end{bmatrix}$$

Amplitude with one-body operator:

$$\det \mathcal{M}(\mathcal{O}) = \lim_{\boldsymbol{c} \to \infty} \sum_{i,j=0,1} \left\langle \Psi \left| : e^{\boldsymbol{c} \cdot \mathcal{O}_{ij}^{I}} : \left| \Psi \right\rangle \right\rangle / \boldsymbol{c}$$

can be expanded to many-body operators

Rank-one operator:

$$\mathcal{O}_{ij}^{I} \equiv F_{ij}^{\dagger}F_{ij} \text{ with } ij \text{ is isospin and spin, and } F_{ij}^{\dagger} = \sum_{\vec{n}} a_{ij}^{\dagger}(\vec{n})f_{ij}^{*}(\vec{n}), F_{ij} = \sum_{\vec{n}} a_{ij}(\vec{n})f_{ij}(\vec{n})$$
(a) When acting on a single particle state, higher rank of $F_{ij}^{\dagger}F_{ij}$ will vanish $: e^{eF_{ij}^{\dagger}F_{ij}} :=: 1 + eF_{ij}^{\dagger}F_{ij}$;
(b) Any operator can be decomposed into Rank-One operator $\mathcal{O} = \sum_{ij} \mathcal{O}_{ij}^{I}$
(c) The determinant of correlation matrix has a linear dependence property
Example: $\langle \Psi | : e^{eF_{ij}^{\dagger}F_{ij}} : |\Psi\rangle = \det \begin{bmatrix} e^{eF_{ij}^{\dagger}F_{ij}} & e^{eF_{ij}^{\dagger}F_{ij}} \\ a_{ij} & a_{ij} \end{bmatrix} = e[m_{\uparrow\uparrow}m_{\downarrow\downarrow} - m_{\uparrow\downarrow}m_{\downarrow\uparrow}]$

Amplitude with one-body operator:

$$\det \mathcal{M}(\mathcal{O}) = \lim_{\boldsymbol{c} \to \infty} \sum_{i,j=0,1} \left\langle \Psi \left| : e^{\boldsymbol{c} \cdot \mathcal{O}_{ij}^{I}} : \right| \Psi \right\rangle / \boldsymbol{c}$$

can be expanded to many-body operators

Rank-One Operator method

Rank-one operator for perturbation:

RO transfer matrix
$$M_{o_{ij}^I} =: e^{cO_{ij}^I}:$$

Rank-One Operator method

Rank-one operator for perturbation:

RO transfer matrix
$$M_{o_{ij}^I} =: e^{cO_{ij}^I}:$$

Computational challenge:

- Every perturbation transfer matrix M1 contains all the components of N3LO chiral potential
- Perturbation: sum of all k in Lt step
- In RO method: sum {i,j}, every O^{I}_{ij} need propagation from O to k

Compared to 1st order perturbation to Energy, workload $\times L_t \times 4 \times L^3$ for one-body operator $\times L_t \times 16 \times L^3$ for two-body operator

Computational challenge

Introduction Perturbation on Lattice NM structure factors Charge Radii

Tools to resolve computational challenge:

- **1.** Monte Carlo sampling for L_t and L^3
- 2. More powerful devices --- GPU

Hybrid: MPI(c++) & GPU(cuda)

Amount of CUDA kernels ~ 70, GPU usage ~ 80%

One chip comparison

AndesCPU:AMD EPYC ~4 tera FlopsSummit GPU:Nvidia Tesla V100 ~125 tera FlopsFrontier GPU:AMD MI250X ~383 tera Flops

Recent progress

- Brief introduction to Nuclear Lattice EFT
 - "Sign problem" & SU(4) symmetry
- Perturbation on Lattice:
 - Wave function matching Hamiltonian (Dean's talk)
 - 1st order perturbation to wave function
 - Rank-One operator method
- Recent progress I: Neutron matter static structure factors
- Recent progress II: Charge Radii (ongoing)
- Summary & perspective

Structure factors of Neutron matter

Introduction Perturbation on Lattice NM structure factors Charge Radii

"As much as 99% of the gravitational binding energy released in core-collapse <u>supernovae</u> escapes the star in the form of <u>neutrinos</u>. This enormous flux, when it interacts with the <u>nuclear matter</u> on its way out of the star, is believed to be an essential ingredient in the explosion of the star." *PRL 126,132701 (2021)*

Neutrino-neutron cross section in medium

$$\frac{1}{N}\frac{d\sigma}{d\Omega} = \frac{G_{\rm F}^2 E_v^2}{16\pi^2} \left(g_a^2 (3 - \cos\theta) S_a(q) + (1 + \cos\theta) S_v(q) \right)$$

 G_F : Fermi coupling constant

 E_{ν} : neutrino energy

PLB 642 (2006) 326-332

Supernova explosion, figure from Science News

Neutron structure factor

$$S_V(q) = \int d^3 \mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \langle \delta n(0,\mathbf{r})\delta n(0,\mathbf{0}) \rangle$$
$$S_A(q) = \int d^3 \mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \langle \delta S_z(0,\mathbf{r})\delta S_z(0,\mathbf{0}) \rangle$$

Not yet an *ab initio* calculation

Neutron matter at finite Temperature

Introduction Perturbation on Lattice NM structure factors Charge Radii

Structure factor at long-wave limit

- First ab initio calculation of this content
- Overall agreement of the trend
- At low density agree with Virial expansion
- Sv of Lattice calculation is smaller
- N3LO correction to Sa is significant
- Calibrate RPA for supernova simulations

Recent progress

- Brief introduction to Nuclear Lattice EFT
 - "Sign problem" & SU(4) symmetry
- Perturbation on Lattice:
 - Wave function matching Hamiltonian (Dean's talk)
 - 1st order perturbation to wave function
 - Rank-One operator method
- Recent progress I: Neutron matter static structure factors
- Recent progress II: Charge Radii (ongoing)
- Summary & perspective

Introduction Perturbation on Lattice NM structure factors Charge Radii

Experimental measurements

- Electron-scattering experiments, charge form factor $F_c(\mathbf{q})$ and $\rho_c(\mathbf{r}) = \frac{1}{(2\pi)^3} \int d^3q e^{-i\mathbf{q}\cdot\mathbf{r}} F_c(\mathbf{q})$

Introduction Perturbation on Lattice NM structure factors Charge Radii

Experimental measurements

- Electron-scattering experiments, charge form factor $F_c(\mathbf{q})$ and $\rho_c(\mathbf{r}) = \frac{1}{(2\pi)^3} \int d^3q e^{-i\mathbf{q}\cdot\mathbf{r}} F_c(\mathbf{q})$
- Laser spectroscopy experiments, hyperfine spectra and isotope shift

$$\delta\nu^{A,A'} = \nu^{A'} - \nu^{A} = k \frac{m_{A'} - m_{A}}{m_{A'}m_{A}} + F\delta \left\langle r^{2} \right\rangle^{A,A'}$$

Miller, A.J., Minamisono, K. et al. Nat. Phys. 15, 432–436 (2019)

Introduction Perturbation on Lattice NM structure factors Charge Radii

Experimental measurements

- Electron-scattering experiments, charge form factor $F_c(\mathbf{q})$ and $\rho_c(\mathbf{r}) = \frac{1}{(2\pi)^3} \int d^3q e^{-i\mathbf{q}\cdot\mathbf{r}} F_c(\mathbf{q})$
- Laser spectroscopy experiments, hyperfine spectra and isotope shift

$$\delta\nu^{A,A'} = \nu^{A'} - \nu^{A} = k \frac{m_{A'} - m_{A}}{m_{A'}m_{A}} + F\delta \left\langle r^{2} \right\rangle^{A,A'}$$

Miller, A.J., Minamisono, K. et al. Nat. Phys. 15, 432-436 (2019)

Theoretical calculation

$$\langle r_{\rm ch}^2 \rangle = \langle r_{\rm pp}^2 \rangle + R_{\rm p}^2 + \frac{N}{Z} R_{\rm n}^2 + \langle r^2 \rangle^{\rm (rel)}$$

P. Reinhard, W. Nazarewicz. PRC 103, 054310 (2021)

Introduction Perturbation on Lattice NM structure factors Charge Radii

Experimental measurements

- Electron-scattering experiments, charge form factor $F_c(\mathbf{q})$ and $\rho_c(\mathbf{r}) = \frac{1}{(2\pi)^3} \int d^3q e^{-i\mathbf{q}\cdot\mathbf{r}} F_c(\mathbf{q})$
- Laser spectroscopy experiments, hyperfine spectra and isotope shift

$$\delta\nu^{A,A'} = \nu^{A'} - \nu^{A} = k \frac{m_{A'} - m_{A}}{m_{A'}m_{A}} + F\delta \left\langle r^{2} \right\rangle^{A,A'}$$

Miller, A.J., Minamisono, K. et al. Nat. Phys. 15, 432–436 (2019)

Theoretical calculation

$$\left\langle r_{\rm ch}^2 \right\rangle = \left\langle r_{\rm pp}^2 \right\rangle + R_{\rm p}^2 + \frac{N}{Z} R_{\rm n}^2 + \left\langle r^2 \right\rangle^{\rm (rel)}$$
$$\hat{r}_{\rm pp}^2 = \frac{1}{Z} \sum_{i=1}^Z \left(\overrightarrow{r_i} - \overrightarrow{r_0} \right)^2$$

P. Reinhard, W. Nazarewicz. PRC 103, 054310 (2021)

Experimental measurements

- Electron-scattering experiments, charge form factor $F_c(\mathbf{q})$ and $\rho_c(\mathbf{r}) = \frac{1}{(2\pi)^3} \int d^3q e^{-i\mathbf{q}\cdot\mathbf{r}} F_c(\mathbf{q})$
- Laser spectroscopy experiments, hyperfine spectra and isotope shift

$$\delta\nu^{A,A'} = \nu^{A'} - \nu^{A} = k \frac{m_{A'} - m_{A}}{m_{A'}m_{A}} + F\delta \left\langle r^{2} \right\rangle^{A,A}$$

Theoretical calculation

$$\left\langle r_{\rm ch}^2 \right\rangle = \left\langle r_{\rm pp}^2 \right\rangle + R_{\rm p}^2 + \frac{N}{Z} R_{\rm n}^2 + \left\langle r^2 \right\rangle^{\rm (rel)}$$
P. Reinhard, W. Nazarewicz. PRC 103, 054310 (2021)
$$\hat{r}_{\rm pp}^2 = \frac{1}{Z} \sum_{i=1}^{Z} \left(\overrightarrow{r_i} - \overrightarrow{r_0} \right)^2 \qquad \left\langle r^2 \right\rangle^{\rm (rel)} = 3\mathcal{D} + \left(\mu_p - \frac{1}{2} \right) \mathcal{D} \left\langle \hat{\sigma} \cdot \hat{\ell} \right\rangle_p + \frac{\mu_n N}{Z} \mathcal{D} \left\langle \hat{\sigma} \cdot \hat{\ell} \right\rangle_n \text{ with Darwin-Foldy } \mathcal{D} = \frac{\hbar^2}{4m_{\rm p}^2 c^2}$$

Introduction Perturbation on Lattice NM structure factors Charge Radii

Miller, A.J., Minamisono, K. et al. Nat. Phys. 15, 432–436 (2019)

Experimental measurements

- Electron-scattering experiments, charge form factor $F_c(\mathbf{q})$ and $\rho_c(\mathbf{r}) = \frac{1}{(2\pi)^3} \int d^3q e^{-i\mathbf{q}\cdot\mathbf{r}} F_c(\mathbf{q})$
- Laser spectroscopy experiments, hyperfine spectra and isotope shift

$$\delta\nu^{A,A'} = \nu^{A'} - \nu^{A} = k \frac{m_{A'} - m_{A}}{m_{A'}m_{A}} + F\delta \left\langle r^{2} \right\rangle^{A,A}$$

Theoretical calculation

$$\left\langle r_{\rm ch}^2 \right\rangle = \left\langle r_{\rm pp}^2 \right\rangle + R_{\rm p}^2 + \frac{N}{Z} R_{\rm n}^2 + \left\langle r^2 \right\rangle^{\rm (rel)}$$
P. Reinhard, W. Nazarewicz. PRC 103, 054310 (2021)
$$\hat{r}_{\rm pp}^2 = \frac{1}{Z} \sum_{i=1}^{Z} \left(\overrightarrow{r_i} - \overrightarrow{r_0} \right)^2 \qquad \left\langle r^2 \right\rangle^{\rm (rel)} = 3\mathcal{D} + \left(\mu_p - \frac{1}{2} \right) \mathcal{D} \langle \hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{\ell}} \rangle_p + \frac{\mu_n N}{Z} \mathcal{D} \langle \hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{\ell}} \rangle_n \text{ with Darwin-Foldy } \mathcal{D} = \frac{\hbar^2}{4m_{\rm p}^2 c^2}$$

On Lattice $\hat{r}_{pp}^2 = \frac{1}{Z} \sum_{i=1}^{Z} (\overrightarrow{r_i} - \overrightarrow{r_0})^2$ Pinhole ALG

Introduction Perturbation on Lattice NM structure factors Charge Radii

Miller, A.J., Minamisono, K. et al. Nat. Phys. 15, 432–436 (2019)

Experimental measurements

- Electron-scattering experiments, charge form factor $F_c(\mathbf{q})$ and $\rho_c(\mathbf{r}) = \frac{1}{(2\pi)^3} \int d^3q e^{-i\mathbf{q}\cdot\mathbf{r}} F_c(\mathbf{q})$
- Laser spectroscopy experiments, hyperfine spectra and isotope shift

$$\delta\nu^{A,A'} = \nu^{A'} - \nu^{A} = k \frac{m_{A'} - m_{A}}{m_{A'}m_{A}} + F\delta \left\langle r^{2} \right\rangle^{A,A}$$

Theoretical calculation

$$\left\langle r_{\rm ch}^2 \right\rangle = \left\langle r_{\rm pp}^2 \right\rangle + R_{\rm p}^2 + \frac{N}{Z} R_{\rm n}^2 + \left\langle r^2 \right\rangle^{\rm (rel)}$$
P. Reinhard, W. Nazarewicz. PRC 103, 054310 (2021)
$$\hat{r}_{\rm pp}^2 = \frac{1}{Z} \sum_{i=1}^{Z} \left(\overrightarrow{r_i} - \overrightarrow{r_0} \right)^2 \qquad \left\langle r^2 \right\rangle^{\rm (rel)} = 3\mathcal{D} + \left(\mu_p - \frac{1}{2} \right) \mathcal{D} \left\langle \hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{\ell}} \right\rangle_p + \frac{\mu_n N}{Z} \mathcal{D} \left\langle \hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{\ell}} \right\rangle_n \text{ with Darwin-Foldy } \mathcal{D} = \frac{\hbar^2}{4m_{\rm p}^2 c^2}$$

Introduction Perturbation on Lattice NM structure factors Charge Radii

Charge radii from density correlation function

$$\langle r_{pp}^2 \rangle = \frac{1}{ZA} \int d^3r d^3r' \langle \rho_p(\vec{r})(\vec{r} - \vec{r'})^2 \rho(\vec{r'}) \rangle - \frac{1}{2A^2} \int d^3r d^3r' \langle \rho(\vec{r})(\vec{r} - \vec{r'})^2 \rho(\vec{r'}) \rangle$$

Introduction Perturbation on Lattice NM structure factors Charge Radii

 $P(r_{12})$

Charge radii from density correlation function

$$\langle r_{pp}^2 \rangle = \frac{1}{ZA} \int d^3r d^3r' \langle \rho_p(\vec{r})(\vec{r} - \vec{r'})^2 \rho(\vec{r'}) \rangle - \frac{1}{2A^2} \int d^3r d^3r' \langle \rho(\vec{r})(\vec{r} - \vec{r'})^2 \rho(\vec{r'}) \rangle$$

Rank-One operator methods for perturbation of charge radii

Test Hamiltonian: $H_{\text{full}} = T + V$ T: kinetic V: two-body contact **Perturbation:** $H_{\text{pert}} = H_0 + (H_1)'$ with $H_0 = T + (1 - x)V$ and $H_1 = xV$

Setups: L=6, Lt=80, Vcc= -3.9e-07 MeV^-2

18

Introduction Perturbation on Lattice NM structure factors Charge Radii

Charge radii from density correlation function

$$\langle r_{pp}^2 \rangle = \frac{1}{ZA} \int d^3r d^3r' \langle \rho_p(\vec{r})(\vec{r} - \vec{r'})^2 \rho(\vec{r'}) \rangle - \frac{1}{2A^2} \int d^3r d^3r' \langle \rho(\vec{r})(\vec{r} - \vec{r'})^2 \rho(\vec{r'}) \rangle$$

Rank-One operator methods for perturbation of charge radii

T: kinetic V: two-body contact Perturbation: $H_{pert} = H_0 + (H_1)'$ with $H_0 = T + (1 - x)V$

Test Hamiltonian: $H_{\text{full}} = T + V$

and $H_1 = xV$

Setups: L=6, Lt=80, Vcc= -3.9e-07 MeV^-2

Introduction Perturbation on Lattice NM structure factors Charge Radii

Charge radii from density correlation function

$$\langle r_{pp}^2 \rangle = \frac{1}{ZA} \int d^3r d^3r' \langle \rho_p(\vec{r})(\vec{r} - \vec{r'})^2 \rho(\vec{r'}) \rangle - \frac{1}{2A^2} \int d^3r d^3r' \langle \rho(\vec{r})(\vec{r} - \vec{r'})^2 \rho(\vec{r'}) \rangle$$

Rank-One operator methods for perturbation of charge radii

T: kinetic V: two-body contact Perturbation: $H_{pert} = H_0 + (H_1)'$ with $H_0 = T + (1 - x)V$

Test Hamiltonian: $H_{\text{full}} = T + V$

and $H_1 = xV$

Setups: L=6, Lt=80, Vcc= -3.9e-07 MeV^-2

Introduction Perturbation on Lattice NM structure factors Charge Radii

Charge radii from density correlation function

$$\langle r_{pp}^2 \rangle = \frac{1}{ZA} \int d^3r d^3r' \langle \rho_p(\vec{r})(\vec{r} - \vec{r'})^2 \rho(\vec{r'}) \rangle - \frac{1}{2A^2} \int d^3r d^3r' \langle \rho(\vec{r})(\vec{r} - \vec{r'})^2 \rho(\vec{r'}) \rangle$$

Rank-One operator methods for perturbation of charge radii

T: kinetic V: two-body contact Perturbation: $H_{pert} = H_0 + (H_1)'$

Test Hamiltonian: $H_{\text{full}} = T + V$

with $H_0 = T + (1 - x)V$ and $H_1 = xV$

Setups: L=6, Lt=80, Vcc= -3.9e-07 MeV^-2

Introduction Perturbation on Lattice NM structure factors Charge Radii

Charge radii from density correlation function

$$\langle r_{pp}^2 \rangle = \frac{1}{ZA} \int d^3r d^3r' \langle \rho_p(\vec{r})(\vec{r} - \vec{r'})^2 \rho(\vec{r'}) \rangle - \frac{1}{2A^2} \int d^3r d^3r' \langle \rho(\vec{r})(\vec{r} - \vec{r'})^2 \rho(\vec{r'}) \rangle$$

Rank-One operator methods for perturbation of charge radii

Introduction Perturbation on Lattice NM structure factors Charge Radii

Experiments measurement of charge radii difference: < 1%

E (MeV)	Ехр	Latt (N3LO)	different
28Si	-236.536	-235.06 (92)	~ 0.6%
32Si	-271.407	-263.46 (82)	~ 3%

Introduction Perturbation on Lattice NM structure factors Charge Radii

Experiments measurement of charge radii difference: < 1%

E (MeV)	Ехр	Latt (N3LO)	different
28Si	-236.536	-235.06 (92)	~ 0.6%
32Si	-271.407	-263.46 (82)	~ 3%

High precision calculation needs highly efficient methods and huge computational resources

$\langle r_{ch}^2 \rangle$	Ехр	Latt (LO)	Latt (N3LO)
28Si	9.749	10.126 (8)	9.258 (228)
32Si	-	10.273 (8)	9.553 (521)
		Pro	

Only Lt = 60 More works need to be done

- Chiral EFT and Many-body correlation are treated within the same framework of NLEFT
- "Sign problem" can be resolved by Wave function matching and Perturbation theory
- Rank-one operator method pave the way to accurate observable calculations on lattice
- As applications, neutron matter structure factors and charge radii are discussed
- Efficient methods and large-scale calculation are needed for high precision charge radii
- More observables: Electric and Magnetic transitions, $0\nu\beta\beta$, EDM, ...
- Advanced lattice algorithm and efficient code ...

Thanks for your attention!

Nuclear Lattice EFT Collaboration

Dean Lee, Ulf-G. Meißner, Timo A. Lähde, Evgeny Epelbaum, Serdar Elhatisari, Bingnan Lu, Myungkuk Kim, Young-Ho Song, Shihang Shen, Zhengxue Ren, Fabian Hildenbrand, Avik Sarkar, Lukas Bovermann, Gianluca Stellin,.....