

Early FRIB experiments: Explore Structural Properties of Exotic Nuclei via β decay and transfer Reactions

Rebeka Sultana Lubna

Facility for Rare Isotope Beams

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

27											Co48	Co49	Co50 44 MS	Co51 >200 NS	Co52	Co53 240 MS	Co54	Со55	Co56 77233 D	Co57 271.74 D	Co58	Co59
26									Fe45	Fe46 20 MS	Fe47 27 ms	Fe48 44 MS	Fe49 тжs	Fe50	Fe51 305 MS	Fe52 8275H	Fe53 в.я. м	Fe54	Fe55 2.73 Y	Fe56 91.754	Fe57	Fe58
25									Mn44	Mn45 ∢лл×s	Mn46 41 MS	Mn47	Mn48	Mn49 382 MS	Mn50 285.29 MS	Mn51 462 M	Mn52 5.591 D	Mn53	Mn54 312.11 D	Mn55	Mn56 2.5789 H	Mn5 854 8
24								Cr42	Cr43 21 MS	Cr44	Cr45 EDMS	Cr46	Cr47 SED MS	Сr48 21.55 н	Cr49 42.3 M	Cr50	Cr51	Cr52	Cr53	Cr54	Cr55	Cr56
23							V40	V41	V42	V43	V44	V45	V46	V47 326M	V48	V49 330 D	V50 0250	V51	V52	V53	V54 498 s	V55
22						Ti38	Ti39	Ti40	Ti41	Ti42	Ti43	Ti44	Ti45	Ti46	Ti47	Ti48	Ti49	Ti50	Ti51	Ti52	Ti53	Ti54
21					Sc36	Sc37	Sc38	Sc39	Sc40	Sc41	Sc42	Sc43	Sc44	Sc45	Sc46	Sc47	Sc48	Sc49	Sc50	Sc51	Sc52	Sc53
20				Ca34	Ca35	Ca36	Ca37	Ca38	Ca39	Ca40	Ca41	Ca42	Ca43	Ca44	Ca45	Ca46	Ca47	Ca48	Са49 влам	Ca50	Ca51	Ca52
19			K32	K33	K34	K35	K36	K37	K38	K39	K40	K41	K42	K43	K44	K45	K46	K47	K48 68 5	K49	K50	K51
18		Ar30	Ar31	Ar32	Ar33	Ar34	Ar35	Ar36	Ar37	Ar38	Ar39	Ar40	Ar41	Ar42	Ar43	Ar44	Ar45	Ar46	Ar47	Ar48	Ar49	Ar50
17	C128	C129	C130	C131	C132	C133	C134	C135	C136	C137	C138	C139	C140	C141 384 S	C142	C143	C144 0.56 s		C146	C147		С149
16	S27	S28	S29	S30	S31 2.572 s	\$32	\$33 0.75	\$34 421	S35	\$36	S37	S38	S39	S40 88 S	S41 263	S42	S43	S44	S45 E2 MS	S46	S47	S48
15	P26 20 MS	P27 260 MS	P28 270.3 MS	P29	P30 2.498 M	P31	P32	P33	P34	P35	P36	P37 2.31.8	P38 0 <i>6</i> 4 8	P39	P40 260 MS	P41	P42	P43 33 MS	Р44 >200 NS	P45	P46	
14	Si25	Si26	Si27	Si28	Si29	Si30	Si31	Si32	Si33	Si34	Si35 0.78 s	Si36	Si37	Si38	Si39	Si40	Si41	Si42		Constant of the		2
13	A124	A125	A126	A127	A128	A129	A130	A131	A132	A133	A134 ED MS	A135	A136	A137	A138	A139	A140					
12	Mg23	Mg24	Mg25	Mg26	Мg27 9499 м	Mg28 20.915H	Mg29	Mg30	Mg31 230MS	Mg32	Mg33 sums	Mg34 20 MS	Mg35 TUMS	Mg36	Mg37 >260 NS			28				
11	Na22	Na23	Na24	Na25 \$21 \$	Na26	Na27 SILMS	Na28 30.5 MS	Na29	Na30 48 MS	Na31	Na32	Na33 B2 MS	Na34	Na35		1						
10	Ne21	Ne22	Ne23	Ne24	Ne25	Ne26	Ne27 32 MS	Ne28	Ne29	Ne30	Ne31	Ne32			1							
							100000			20												

- Isotopes with Z <= 20 and n > 20.
 - Rich testing ground for the models to assess the structural evolution.

•

• Evolution near N = 28 shell gap.

http://www.nuclear.csdb.cn/nuclear/index.asp

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

- Shape-coexistence with the FRIB Decay Station (FDS, current FDSi).
- Single-particle strength distribution via particle transfer reactions, (d, p) and (d, t) with the SOLenoid spectrometer Apparatus for Reaction Studies (SOLARIS).
- Phenomenological shell-model interaction.

• Shape-coexistence with the FRIB Decay Station (FDS, current FDSi).

- Single-particle strength distribution via particle transfer reactions, (d, p) and (d, t) with the SOLenoid spectrometer Apparatus for Reaction Studies (SOLARIS).
- Phenomenological shell-model interaction.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

FRIB Decay Station, FDS (current FDSi)

- Measurements from the decay experiments with the fast beam delivered.
- A high-efficiency multi-detection system.
- γ-ray spectroscopy with HPGe and LaBr3, VANDLE, implantation detector.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Photo credit: FDSi collaboration

Discovery Potential

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

Michigan State University

https://fds.ornl.gov/wp-content/uploads/2020/09/FDSi-Proposal-May2020.pdf

Discovery Potential

Facility for Rare Isotope Beams

https://fds.ornl.gov/wp-content/uploads/2020/09/FDSi-Proposal-May2020.pdf

U.S. Department of Energy Office of Science Michigan State University

R.S.Lubna, May 2023, FRIB TA workshop, Slide 11

Identification of isomers: Shape Coexistence

⁴⁰ Ti	⁴¹ Ti	⁴² Ti	⁴³ Ti	⁴⁴ Ti	⁴⁵ Ti	⁴⁶ Ti	⁴⁷ Ti	⁴⁸ Ti	⁴⁹ Ti	⁵⁰ Ti
³⁹ Sc	⁴⁰ Sc	⁴¹ Sc	⁴² Sc	⁴³ Sc	⁴⁴ Sc	⁴⁵ Sc	⁴⁶ Sc	⁴⁷ Sc	⁴⁸ Sc	⁴⁹ Sc
³⁸ Ca	³⁹ Ca	⁴⁰ Ca	⁴¹ Ca	⁴² Ca	⁴³ Ca	⁴⁴ Ca	⁴⁵ Ca	⁴⁶ Ca	⁴⁷ Ca	⁴⁸ Ca
³⁷ K	³⁸ K	³⁹ K	⁴⁰ K	⁴¹ K	⁴² K	⁴³ K	⁴⁴ K	⁴⁵ K	⁴⁶ K	⁴⁷ K
³⁶ Ar	³⁷ Ar	³⁸ Ar	³⁹ Ar	⁴⁰ Ar	⁴¹ Ar	⁴² Ar	⁴³ Ar	⁴⁴ Ar	⁴⁵ Ar	⁴⁶ Ar
³⁵ Cl	³⁶ CI	³⁷ CI	³⁸ CI	³⁹ CI	⁴⁰ CI	⁴¹ CI	⁴² CI	⁴³ Cl	⁴⁴ Cl	⁴⁵ CI
³⁴ S	³⁵ S	³⁶ S	³⁷ S	³⁸ S	³⁹ S	⁴⁰ S	⁴¹ S	⁴² S	⁴³ S	⁴⁴ S
³³ P	³⁴ P	³⁵ P	³⁶ P	³⁷ P	³⁸ P	³⁹ P	⁴⁰ P	⁴¹ P	⁴² P	⁴³ P
³² Si	³³ Si	³⁴ Si	³⁵ Si	³⁶ Si	³⁷ Si	³⁸ Si	³⁹ Si	⁴⁰ Si	⁴¹ Si	⁴² Si
³¹ AI	³² AI	³³ AI	³⁴ AI	³⁵ AI	³⁶ AI	³⁷ AI	³⁸ AI	³⁹ AI	⁴⁰ AI	⁴¹ AI
³⁰ Mg	³¹ Mg	³² Mg	³³ Mg	³⁴ Mg	³⁵ Mg	³⁶ Mg	³⁷ Mg	³⁸ Mg	³⁹ Mg	⁴⁰ Mg
²⁹ Na	³⁰ Na	³¹ Na	³² Na	³³ Na	³⁴ Na	³⁵ Na	³⁶ Na	³⁷ Na		

- level energies
 E2 strengths
 E0 strengths
 transfer cross sections
 quadrupole moments
 quadrupole invariants
- Low-lying states with different shapes correspond to different configurations.
- Isomers can be attributed to the shape coexistence.
- Discovery potential with the beams delivered to the FDS.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

https://doi.org/10.1016/j.ppnp.2021.103931

Identification of β-decaying isomers

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

R.S.Lubna, submitted to Phys. Rev. C

Identification of isomers due to E0 transition

1.

U.S. Department of Energy Office of Science Michigan State University

Half-life Pictures: T. Ogunbeku.

Phys. Rev. Lett. 109, 092503

Shape Coexistence through E0 transition

- Excited 0⁺ levels are good probe for shape coexistence.
- Prospects to study more shape-coexisting 0⁺ levels in more exotic nuclei with higher rates.

Facility for Rare Isotope Beams

- U.S. Department of Energy Office of Science Michigan State University
- 1. Experimental levels from https://www.nndc.bnl.gov/

2. Phys. Rev. C 86, 051301(R) (2012).

- Shape-coexistence with the FRIB Decay Station (FDS, current FDSi).
- Single-particle strength distribution via particle transfer reactions, (d, p) and (d, t) with the SOLenoid spectrometer Apparatus for Reaction Studies (SOLARIS).
- Phenomenological shell-model interaction.

Solenoid Spectrometer, SOLARIS

- Facilitate the measurements from direct reaction with the Re-accelerated beams.
- Work with inverse kinematic, doesn't suffer from the lack of stable target.
- Can measure (d, p) and (d, t) simultaneously.
- Discovery potential with the beams provided by the FRIB.

Particle transfer reactions, simultaneous (d, p) and (d, t) measurements

- Single particle properties near N = 28 deformed region is not well probed.
- Spectroscopic factors will assess the fragmentation of single particle strengths.
- Effective Single Particle Energy (ESPE) with simultaneous (d, p) and (d, t).

Particle transfer reactions, simultaneous (d, p) and (d, t) measurements

- Two experiments approved in FRIB PAC II, focused on the simultaneous (d, p) and (d, t) measurements to probe the fragmentation of the single particle strengths.
- ⁴⁰S(d, p) (d, t)⁴¹S, ³⁹S and ⁴²S (d, p) (d, t) ⁴³S, ⁴¹S.
- ⁴⁶Ca(d, p) (d, t) ⁴⁷Ca, ⁴⁵Ca.²

- 1. R.S.Lubna *et al* , FRIB PAC II approved proposal.
- 2. A.J. Mitchell et al, FRIB PAC II approved proposal.

Particle transfer reactions, (d, p) and (d, t): Future

- S isotopes near N = 28 are well known for deformation.
- ⁴¹S and ⁴³S will be investigated via (d, p) and (d, t) reactions.
- ⁴⁵S assigned solely based on theory.

U.S. Department of Energy Office of Science Michigan State University

Facility for Rare Isotope Beams 1. R.S.Lubna et al, FRIB PAC II approved proposal.

Particle transfer reactions, (d, p) and (d, t): Future

- Spectroscopic factors predicted by model.
- Whether theory can predict the spectroscopic factors properly for ⁴¹S and ⁴³S.
- ⁴⁴S(d, p)(d, t)⁴⁵S will provide stringent test to the models with the ultimate beam rates provided by the FRIB.

- 1. R.S.Lubna et al, FRIB PAC II approved proposal.
- 2. Phys. Rev. C 86, 051301(R) (2012).

- Study of β-decay half-life, strength distribution(GT, FF) and shapecoexistence with the FRIB Decay Station (FDS, current FDSi).
- Single-particle strength distribution via particle transfer reactions, (d, p) and (d, t) with the SOLenoid spectrometer Apparatus for Reaction Studies (SOLARIS).
- Phenomenological shell-model interaction.

- FSU¹shell-model within the *spsdfp* model-space using the data fitting procedure.
- Hamiltonians from the existing models were used as a starting point
- Data fitting performed within the *p-sd-fp* model-space.
- A total of 70 parameters fitted by using 270 experimentally observed levels.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

1. Phys. Rev. Research 2, 043342 (2020)

- Reproduce N = 20 lol phenomena successfully.
- Successful in reproducing opposite parity levels.

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

- 1. Phys. Rev. Research 2, 043342 (2020).
- 2. Phys. Rev. C 100, 034306 (2019).
- 3. Phys. Rev. C 86, 051301(R) (2012).
- 4. Phys. Rev. C 102, 034320 (2020).

R.S.Lubna, May 2023, FRIB TA workshop, Slide 24

- Reproduce N = 20 lol phenomena successfully.
- Successful in reproducing opposite parity levels.
- Not successful for very exotic isotopes.

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

- 1. Phys. Rev. Research 2, 043342 (2020).
- 2. Phys. Rev. C 100, 034306 (2019).
- 3. Phys. Rev. C 86, 051301(R) (2012).

4. Phys. Rev. C 102, 034320 (2020).

R.S.Lubna, May 2023, FRIB TA workshop, Slide 25

- Reproduce N = 20 lol phenomena successfully.
- Successful in reproducing opposite parity levels.
- Not successful for very exotic isotopes.
- Fit more parameters.
- Introduce mixing.
- Expand model space.

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

- 1. Phys. Rev. Research 2, 043342 (2020).
- 2. Phys. Rev. C 100, 034306 (2019).
- 3. Phys. Rev. C 86, 051301(R) (2012).
- 4. Phys. Rev. C 102, 034320 (2020).

• Reproduce N = 20 lol phenomena successfully.

- Successful in reproducing opposite parity levels.
- •
- Not successful for very exotic isotopes.
- Fit more parameters.
- Introduce mixing.
- Expand model space.

experimental data

- Phys. Rev. Research 2, 043342 (2020).
 Phys. Rev. C 100, 034306 (2019).
- Phys. Rev. C 100, 034306 (2019).
 Phys. Rev. C 86, 051301(R) (2012).

4. Phys. Rev. C 102, 034320 (2020).

R.S.Lubna, May 2023, FRIB TA workshop, Slide 27

Conclusion

- β decay can be used to study shape coexistence.
- With the FRIB enhanced beams rates of the exotic nuclei, we aim to populate and study 0⁺ excited levels with the FDS.
- Do we have a consistent model that can interpret their configurations?

Conclusion

- β decay can be used to study shape coexistence.
- With the FRIB enhanced beams rates of the exotic nuclei, we aim to populate and study 0⁺ excited levels with the FDS.
- Do we have a consistent model that can interpret their configurations?

- (d, p) will provide singleparticle strength distribution for the nuclei in deformed region.
- Simultaneous (d, p) and (d, t) will probe the occupancy of the initial isotope.
- FRIB Re-accelerated beam to SOLARIS will study the fragmentation of the singleparticle strength.
- Need models that can explain consistently the properties extracted. .

Conclusion

- β decay can be used to study shape coexistence.
- With the FRIB enhanced beams rates of the exotic nuclei, we aim to populate and study 0⁺ excited levels with the FDS.
- Do we have a consistent model that can interpret their configurations?

- (d, p) will provide singleparticle strength distribution for the nuclei in deformed region.
- Simultaneous (d, p) and (d, t) will probe the occupancy of the initial isotope.
- FRIB Re-accelerated beam to SOLARIS will study the fragmentation of the singleparticle strength.
- Need models that can explain consistently the properties extracted. .

- Data will provide stringent test and challenges to the models.
- Data can be used as invaluable inputs to the phenomenological model.

Thank you

Acknowledgement:

U.S. Department of Energy, Office of Science, Office of Nuclear Physics, Contract No DE-SC0020451.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

R.S.Lubna, May 2023, FRIB TA workshop, Slide 31

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

R.S.Lubna, May 2023, FRIB TA workshop, Slide 32

Discovery Potential

Phys. Rev. Lett. 129, 21250

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Identification of isomers (µs)

<u>µs isomer:</u>

- A µs isomer present in ³²Na beam.
- Confirmed for the delayed γ ray emitted.

Implantation and Ge detectors

- Spin-parity could not be determined.
- Theory suggested either 6⁻ or 0⁺.
- Need more theoretical guidance along with the experimental confirmation.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

T.J.Gray, accepted, Phys. Rev. Lett.

Identification of isomers (ns)

Implantation, Ge and LaBr detectors

<u>~1-100 ns:</u>

• Measure time delay between isomeric state following β decay and γ emission in coincidence

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

T. Ogunbeku, submitted, Phys. Rev. C

Identification of isomers (ms)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

R.S.Lubna, submitted Phys. Rev. C

- FSU shell-model within the spsdfp model-space using the data fitting procedure.
- Hamiltonians from the existing models were used as a starting point
- Data fitting performed within the *p-sd-fp* model-space.
- A total of 70 parameters fitted by ٠ using 270 experimentally observed levels.

Facility for Rare Isotope Beams 2. Phys. Rev. C 46, 923 (1992).

U.S. Department of Energy Office of Science Michigan State University

- 1. Phys. Rev. Research 2, 043342 (2020)
- 3. Phys. Rev. C 74, 034315 (2006).

4. Eur. Phys. J A 25, 499 (2005).

R.S.Lubna, May 2023, FRIB TA workshop, Slide 37

- Reproduce N = 20 lol phenomena successfully.
- Satisfactory predictions of spectroscopic factors.

		Enc	ergy	(2J+1)SF		
Nucleus	J ^x	EXP	Th	EXP	Th	
²⁵ Ne	7/2-	4030	3957	5.8	4.5	
	3/2-	3330	3471	3.0	1.9	
	3/21	2030	2044	1.6	1.8	
27 Ne	7/2-	1740	1634	2.8	3.9	
	3/2-	765	858	2.6	2.4	
	3/2+	0	0	1.7	2.8	
²⁵ Mg	7/2-	3971	3902	2.2-3.3	3.9	
0	3/2-	3413	3525	0.9-1.2	1.5	
	3/2+	974	1098	0.8	0.9	
27 Mg	7/2-	3761	3827	4.6	3.5	
²⁹ Mg ²⁹ Si	3/2-	3559	3644	1.6	2.2	
	3/2+	984	994	2.4	1.5	
²⁹ Mg	7/2-	1430	1719	3.0	4.4	
- B	3/2-	1094	1396	0.4	2.0	
	3/2+	0	0	1.2	1.8	
29Si	7/2-	3623	3684	7.0	4.5	
51	3/2-	4934	4373	2.2	2.3	
	3/2+	1273	1285	3.0	27	
31Si	7/2-	3134	2855	48	5.6	
	3/2-	3533	3435	1.6	28	
	3/2+	0	0	2.8	24	
33Si	7/2-	1435	1452	2.0	6.0	
	3/2-	1981	1944		29	
	3/2+	0	0		1.4	
35 Si	7/2	0	0	45	74	
S I	3/2-	910	000	28	37	
	3/2+	974	936	2.0	2.1	
33 c	7/2-	2035	2042	12	58	
0	3/2-	3221	3386	3.5	23	
	3/2+	0	0	35	26	
35 c	7/2-	1001	2042	54	6.4	
3	3/2-	2348	2400	21	27	
	3/2+	0	0	17	1.5	
37 c	7/2-	Ő	0	5.5	73	
3	3/2-	646	573	18	35	
	3/2+	1398	1303	1.0	5.5	
37 Ar	7/2-	1611	1543	61	63	
	3/2-	2491	2679	1.8	26	
	3/2+	0	0	22	1 5	
³⁹ Ar	7/2-	0	0	50	67	
711	3/2-	1267	1186	2.0	28	
	3/2+	1517	1457	2.0	2.0	

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

1. Phys. Rev. Research 2, 043342 (2020)

- Reproduce N = 20 lol phenomena successfully.
- Satisfactory predictions of spectroscopic factors.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

1. Phys. Rev. Research 2, 043342 (2020)

		Enc	ergy	(2J+1)SF		
Nucleus	J ⁿ	EXP	Th	EXP	Th	
²⁵ Ne	7/2	4030	3957	5.8	4.5	
	3/2-	3330	3471	3.0	1.9	
	3/2+	2030	2044	1.6	1.8	
²⁷ Ne	7/2-	1740	1634	2.8	3.9	
	3/2-	765	858	2.6	2.4	
	3/2+	0	0	1.7	2.8	
²⁵ Mg	7/2-	3971	3902	2.2-3.3	3.9	
823	3/2-	3413	3525	0.9-1.2	1.5	
	3/2+	974	1098	0.8	0.9	
²⁷ Mg	7/2-	3761	3827	4.6	3.5	
1000.501	3/2-	3559	3644	1.6	2.2	
	3/2+	984	994	2.4	1.5	
²⁹ Mg	7/2-	1430	1719	3.0	4.4	
	3/2-	1094	1396	0.4	2.0	
	3/2+	0	0	1.2	1.8	
²⁹ Si	7/2-	3623	3684	7.0	4.5	
100.00	3/2-	4934	4373	2.2	2.3	
	3/2+	1273	1285	3.0	2.7	
31Si	7/2-	3134	2855	4.8	5.6	
	3/2-	3533	3435	1.6	2.8	
	3/2+	0	0	2.8	2.4	
33Si	7/2-	1435	1452		6.0	
	3/2-	1981	1944		2.9	
	3/2+	0	0		1.4	
35Si	7/2	0	0	4.5	7.4	
	3/2-	910	909	2.8	3.7	
	3/2+	974	936			
33S	7/2-	2935	2942	4.2	5.8	
	3/2-	3221	3386	3.5	2.3	
	3/2+	0	0	3.5	2.6	
35S	7/2-	1991	2042	5.4	6.4	
	3/2-	2348	2409	2.1	2.7	
	3/2+	0	0	1.7	1.5	
37S	7/2-	0	0	5.5	7.3	
	3/2-	646	573	1.8	3.5	
	3/2+	1398	1303			
³⁷ Ar	7/2-	1611	1543	6.1	6.3	
	3/2-	2491	2679	1.8	2.6	
	3/2+	0	0	2.2	1.5	
³⁹ Ar	7/2-	0	0	5.0	6.7	
	3/2-	1267	1186	2.0	2.8	
	3/2+	1517	1457			