

Opportunities for studying octupole collectivity at FRIB M. Spieker

Theoretical Justifications and Motivations for Early High-Profile FRIB Experiments, FRIB-TA, May 2023

[Butler and Nazarewicz, RMP 68, 349 (1996)]

Octupole correlations in atomic nuclei (Predictions from DFT at mean-field level)

[[]Y. Cao et al., PRC 102, 024311 (2020)]

See also, e.g., S.E. Agbemava et al., PRC 94, 044304 (2016).

<u>Introduction</u>

B(E3) systematics in Ge-Kr mass region from light-ion scattering

Sudden strength increase in Ge but not in Se. Why? There seems to be nothing special about Ge in terms of octupole collectivity in the other isotonic chains.

[Rosier et al., NPA 453, 389 (1986); Schürmann et al., NPA 475, 361 (1987); Ogino, PRC 33, 71 (1986); Matsuki et al., PLB 113, 21 (1982)]

Introduction

B(E3) systematics in Ge-Kr mass region from light-ion scattering

Strength increase delayed in the other isotopic chains? Ge or Se special?

[Rosier et al., NPA 453, 389 (1986); Schürmann et al., NPA 475, 361 (1987); Ogino, PRC 33, 71 (1986); Matsuki et al., PLB 113, 21 (1982)]

- Experiment with combined GRETINA-S800-LH₂ setup at NSCL
 - Inelastic proton scattering in inverse kinematics
 - Powerful probe to populate 3⁻ states
 - NSCL/Ursinus LH₂ target
 - "Thin" cell was used (50 mg/cm²)
 - Secondary beam energies corresponding to proton energies of 100 MeV in c.m. frame
 - Enhanced sensitivity to both proton and neutron contributions
 - Beam purities: 79% for ⁷⁶Kr, 51% for ⁷⁴Kr, 6% for ⁷²Se
 - 8 GRETINA Quads mounted in north hemisphere (3rd campaign had nominally 12 Quads).

Experiment

Doppler-corrected in-beam γ-ray spectra for ^{74,76}Kr and ⁷²Se

[Results: MS et al., PRC 106, 054305 (2022); UCGRETINA: Riley et al., NIM A 1003, 165305 (2021)]

(p,p') cross sections for ⁷²Se and ^{74,76}Kr

Direct observable: (p,p') cross sections.
 (p,p') cross sections allow model-dependent determination of deformation parameters β_λ. → B(Eλ; 0₁⁺ → J_f^π) can be calculated.

Disclaimer

[MS et al., PRC 106, 054305 (2022) and PLB 841, 137932 (2023)]

Results

esults

[MS *et al.*, PRC **106**, 054305 (2022)] and other data from: [Wimmer *et al.*, EPJA **56**, 159 (2020); Wimmer *et al.*, PRL **126**, 072501 (2021); Pritychenko *et al.*, Nuclear Data Sheets **120**, 112 (2014); Gillespie *et al.*, PRC **104**, 044313 (2021); Matsuki *et al.*, PLB **113**, 21 (1982)]

Systematics in the Kr isotopes with $N \leq 50$

Direct observable: (p,p') cross sections.
 (p,p') cross sections allow model-dependent determination of deformation parameters β_λ. → B(Eλ; 0₁⁺ → J_f^π) can be calculated.

Results:

- Excellent agreement of B(E2; 2⁺₁ → 0⁺₁) to values determined with other probes.
- $B(E3; 3_1^- \rightarrow 0_1^+)$ strengths fit well into systematics.
- $B\left(E3; 3^{-}_{2,(p,p')} \rightarrow 0^{+}_{1}\right)$ strengths, even though assigned tentatively in ^{74,76}Kr, show that strength remains fragmented.
 - \rightarrow Fragmentation appears nontrivial as 2nd 3⁻ is not necessarily 2nd strongest fragment.

Results

B(E3) strength distribution in Ge-Kr mass region

Strength increase observed for ⁷²Se but not for ^{74,76}Kr. What determines strength increase?

[Rosier et al., NPA 453, 389 (1986); Schürmann et al., NPA 475, 361 (1987); Ogino, PRC 33, 71 (1986); Matsuki et al., PLB 113, 21 (1982); MS et al., PRC 106, 054305 (2022)]

11

Summed B(E3) strengths in Ge-Kr mass region

Two distinct regions with sudden strength increase at A = 72

Summed B(E3) strengths in Ge-Kr mass region

Two distinct regions with sudden strength increase at A = 72

Some recent work on "shapes":

[Ayangeakaa *et al.*, PLB **754**, 254 (2016)] [Henderson *et al.*, PRL **121**, 082502 (2018)] [Gillespie *et al.*, PRC **104**, 044313 (2021)] [Wimmer *et al.*, PRL **126**, 072501 (2021)]

spherical to prolate (triaxial?)

Summed B(E3) strengths in Ge-Kr mass region

Two distinct regions with sudden strength increase at A = 72

Octupole and quadrupole "correlations" from SCMF+IBM calculations

The minima associated with the 0p-0h, 2p-2h, and 4p-4h unperturbed configurations are identified by the circle, square, and triangle, respectively. The red solid symbol denotes the global minimum. Octupole softness is predicted to decrease from 76 Kr to 72 Kr.

(Calculations courtesy of K. Nomura)

Experimentally, two distinct regions with sudden strength increase at A = 72.

So, what is going on here? Are the sudden shape transitions in this region affecting octupole collectivity? What should we expect for ^{70,72}Kr and ⁷⁰Se? These nuclei could be studied at FRIB. But can theory even reliably inform experiment in this mass region?

TABLE II. The results for selected nuclei with the number of neutrons or protons are around 16, 34, 56, 88, and 134 (neutron only). Enhanced octupole transitions are found from light to heavy octupole-magic nuclei, while "collapse" may be obtained for heavy nuclei.

Nuclei	Force	$E(3_{1}^{-})$	B(E3)	α	$E(3_{1}^{-})$	B(E3)	α
		RPA			0		
$^{32}_{16}S_{16}$	$\rm SkM^*$	5.692	15.6	1.0	5.686	15.7	1.0
	SLy4	6.255	18.3	1.0	6.248	18.4	1.0
	SLy5	6.382	18.8	1.0	6.147	20.4	1.0
	Exp.				5.006	30	
$^{64}_{30}$ Zn ₃₄	$\rm SkM^*$	1.959	5.8	1.4	3.315	18.5	1.4
	SLy4	3.381	13.3	1.2	4.243	24.7	1.2
	SLy5	3.431	13.6	1.2	4.265	24.8	1.2
	Exp.				2.999	20	
$^{72}_{34}Se_{38}$	SkM*	1.068	54.8	6.5	1.135	75.3	8.4
	SLy4	2.069	44.8	2.9	2.406	49.3	2.8
	SLy5	1.931	44.2	3.1	2.412	47.1	2.7
	Exp.				2.406	32	
$^{90}_{34}Se_{56}$	SkM^*	1.542	38.6	4.7	1.882	33.6	3.5
	SLy4	1.947	37.1	3.6	2.749	26.8	2.1
	SLy5	1.879	37.7	3.8	2.574	29.6	2.4
	Exp.				_	_	
$^{98}_{40}\mathrm{Zr}_{58}$	SkM^*	collapse			collapse		
	SLy4	collapse			0.435	215.6	64.4
	SLy5	collapse		1.332	65.8	6.6	
	Exp.				1.806	_	
$^{146}_{56}Ba_{90}$	SkM^*	collapse			collapse		
	SLy4	collapse			1.695	39.7	2.9
	SLy5	collapse		1.541	45.0	3.4	
	Exp.				0.821	_	
$^{226}_{88}\rm{Ra}_{138}$	SkM^*	collapse		collapse			
	SLy4	collapse		1.158	59.5	10.3	
	SLy5	co	ollapse		1.325	51.4	17.7
	Exp.				0.322	54	

Recently posted on the arXiv: RPA/QRPA study of B(E3; 3⁻₁ → 0⁺₁) strength using different Skyrme functionals at mean-field level.

[Bui et al., arXiv:2303.10928 [nucl-th]]

→ Observed huge model dependency for excitation energy and reduced transition probability.

Huge model dependency!

Kr isotopes and strength evolution in Kr-Ge mass region not discussed. Not clear whether "model" gets trend right.

Bui et al. state:

"<u>The results for octupole-magic nuclei are extremely sensitive to the choice of</u> <u>Skyrme force</u>. [...] The difference between SLy5 and SLy4 is from the terms which depend on the spin-orbit densities. It is well-known that the spin-orbit interaction plays a key point in the single-particle spectrum which, as we saw, largely determines the octupole magic numbers. A small change in the spinorbit component makes a significant change in the result."

The challenges? (The example of the $B(E3; 3_1^- \rightarrow 0_1^+) = 42(3)$ W.u. in ⁹⁶Zr)

Ш

Ш

Table 2

Contributions of the various proton and neutron excitations to the B(E3; $3^- \rightarrow 0^+$) transition probability in ⁹⁶Zr calculated using the MCSM approach described in the text.

Proton				Neutron			
Initial orbit	Final orbit	Contribution [%]		Initial orbit	Final orbit	Contribution [%]	
0f _{5/2}	$\begin{array}{c} 0g_{9/2} \\ 1d_{5/2} \\ 2s_{1/2} \end{array}$	1.3 0.7 0.7	6.0	0g _{9/2}	$\begin{array}{c} 0h_{11/2} \\ 1f_{7/2} \\ 2p_{3/2} \end{array}$	6.3 1.5 0.4	8.2
	1d _{3/2} 0g _{7/2}	1.0 2.3		1d _{5/2}	0h _{11/2} 1f _{7/2}	29.8 3.2	33.5
1p _{3/2}	0g _{9/2}	13.1	17.2		2p _{3/2}	0.5	
	1d _{5/2}	1.3		2s _{1/2}	1f _{7/2}	0.2	0.2
	1d _{3/2}	1.9		1d _{3/2}	2p _{3/2}	0.1	0.1
	0g _{7/2}	0.9		0g _{7/2}	0h _{11/2}	0.1	0.1
1p _{1/2}	$1d_{5/2} \\ 0g_{7/2}$	1.9 3.0	4.9				
0g _{9/2}	Of _{5/2} 1p _{3/2}	0.7 5.1	5.8	0h _{11/2}	0g _{9/2} 1d _{5/2}	3.1 9.8	13.0
1d _{5/2}	0f _{5/2}	0.4	2.2		0g _{7/2}	0.1	
	1p _{3/2} 1p _{1/2}	0.7 1.1		1f _{7/2}	0g _{9/2} 1d _{5/2}	1.0 1.7	3.0
2s _{1/2}	0f _{5/2}	0.5	0.5		2s _{1/2}	0.2	
1d _{3/2}	0f _{5/2}	0.6	1.7		1d _{3/2}	0.1	
	1p _{3/2}	1.1		2p _{3/2}	0g _{9/2}	0.3	0.6
0g _{7/2}	0f _{5/2} 1p _{3/2}	1.3 0.5	3.3		$\frac{1d_{5/2}}{1d_{3/2}}$ 0.1	0.2	
	1p _{1/2}	1.5					
Sum			41.6				58.7

[Ł.W. Iskra et al., PLB 788, 396 (2019)]

[Butler and Nazarewicz, RMP 68, 349 (1996)]

The challenges? (The example of the $B(E3; 3_1^- \rightarrow 0_1^+) = 42(3)$ W.u. in ⁹⁶Zr)

Rong *et al.* performed projection-aftervariation calculations for ⁹⁶Zr based on a multidimensionally constrained relativistic Hartree-Bogoliubov model. They showed that an octupole deformed shape is favored in energy after symmetry restoration, and that this phenomenon cannot be reproduced in the pure mean-field calculations.

(b) non-axial but reflection symmetry with (β_{20}, β_{22}) , (c) axial symmetry but reflection asymmetry with (β_{20}, β_{30}) , and (d) non-axial and reflection asymmetry with $(\beta_{20}, \beta_{22}, \beta_{30}, \beta_{32})$.

⁹⁶Zr could be octupole deformed?

[Rong et al., PLB 840, 137896 (2023)]

Should we also expect enhanced $B(E3) \sim 40$ W.u. strengths in the neutron-rich isotopes? Can we really claim that they could be octupole deformed? What about ⁹⁰Se (Z=34, N=56)? 5-kW (²³⁸U) rate is 10⁴ pps for ⁹⁰Se. That is feasible!

Introduction

Appearance of alternating-parity band at low spin and low excitation energy

84.4

Introduction

Safe Coulomb excitation of ^{222,228}Ra at HIE-ISOLDE

Statically octupole deformed

Octupole vibrational

[P.A. Butler et al., Phys Rev Lett. 124, 042503 (2020)]

I (ħ)

[P.A. Butler et al., Phys. Rev. Lett. 124, 042503 (2020)]

Dutlook

Octupole collectivity and EDM? ²²⁵Ra and ²²⁹Pa – The holy grails

Highlighted experiment: Coulomb excitation of ²²³Ra with GRETINA and CHICO-2 at ANL to test whether ²²³Ra is statically octupole deformed (parity doublet ΔE =50 keV). Experiment used 400 ng Ra(NO₃)₂ target (70% enriched sample; dose rate of 60 mR/hr). Experiment happened during last GRETINA campaign. Analysis is ongoing.

[R.V.F. Janssens and A.D. Ayangeakaa, private communication]

25

Octupole collectivity and EDM? ²²⁵Ra and ²²⁹Pa – The holy grails

Highlighted experiment: Coulomb excitation of ²²³Ra with GRETINA and CHICO-2 at ANL to test whether ²²³Ra is statically octupole deformed (parity doublet ΔE =50 keV). Experiment used 400 ng Ra(NO₃)₂ target (70% enriched sample; dose rate of 60 mR/hr). Experiment happened during last GRETINA campaign. Analysis is ongoing.

[R.V.F. Janssens and A.D. Ayangeakaa, private communication]

26

^{144,146}Ba – What we know from ANL experiments

$$B(E3; 3_1^- \to 0_1^+) = 48^{+25}_{-34}$$
 W.u. for ¹⁴⁴Ba
 $B(E3; 3_1^- \to 0_1^+) = 48^{+21}_{-29}$ W.u. for ¹⁴⁶Ba

[B. Bucher et al., PRL 116, 112503 (2016) & PRL 118, 152504 (2017)]

Rate at ANL was less than 10⁴ pps.

→ Projected 400-kW rate is more than 10⁶ pps for ¹⁴⁴Ba and around 10⁵ pps for ¹⁴⁶Ba.

^{144,146}Ba – What we know from ANL experiments

 ^{146}Ba

TABLE I. The experimental $|\langle I_f^{\pi} || \hat{M}_{\lambda} || I_i^{\pi} \rangle|$ matrix elements $(e \cdot b^{\lambda/2})$ based on the GOSIA fit along with new symmetry-conserving configuration-mixing calculations (see text and Ref. [23] for details).

$I_i^{\pi} \to I_f^{\pi}$	$E\lambda$	Experimental	SCCM
$0^+ \rightarrow 1^-$	<i>E</i> 1	$0.000223 \left(\begin{array}{c} 10 \\ -8 \end{array} \right)^{a}$	0.00474
$1^- \rightarrow 3^-$	E2	1.2(5)	1.6
$0^+ \rightarrow 2^+$	E2	1.17(2) ^a	1.14
$2^+ \rightarrow 4^+$	E2	1.97(14)	1.90
$4^+ \rightarrow 6^+$	<i>E</i> 2	$2.35 \binom{+20}{-24}$	2.43
$6^+ \rightarrow 8^+$	<i>E</i> 2	$2.17\binom{+65}{-33}$	2.90
$0^+ \rightarrow 3^-$	E3	$0.65 \left({+14 \atop -20} \right)$	0.54
$2^+ \rightarrow 5^-$	E3	$1.01 \begin{pmatrix} +61 \\ -20 \end{pmatrix}$	0.87
$4^+ \rightarrow 7^-$	E3	$1.25 \begin{pmatrix} -26\\ +85\\ -34 \end{pmatrix}$	1.11
$6^+ \rightarrow 9^-$	E3	$1.5\binom{+8}{-12}$	

^aPrimarily determined by previous lifetime and/or branching ratio data [10].

$$B(E3; 3_1^- \to 0_1^+) = 48^{+25}_{-34}$$
 W.u. for ¹⁴⁴Ba
 $B(E3; 3_1^- \to 0_1^+) = 48^{+21}_{-29}$ W.u. for ¹⁴⁶Ba

[B. Bucher et al., PRL 116, 112503 (2016) & PRL 118, 152504 (2017)]

[SCCM: R.N. Bernard et al., PRC 93, 061302(R) (2016)]

Beyond mean field level

"It is important to point out that a fully quantitative agreement with the experimental data cannot be expected within the present framework because neither triaxial (*K* mixing) nor time-reversal symmetry breaking (cranking) intrinsic wave functions are considered. As a consequence, the ground state is better explored variationally than the excited states and gains more correlation energy producing the stretching of the spectrum. Including triaxial cranking intrinsic states would thus produce a compression of the calculated spectrum, and a better quantitative agreement with the experiments."

^{144,146}Ba – What we know from ANL experiments

$$B(E3; 3_1^- \to 0_1^+) = 48^{+25}_{-34}$$
 W.u. for ¹⁴⁴Ba
 $B(E3; 3_1^- \to 0_1^+) = 48^{+21}_{-29}$ W.u. for ¹⁴⁶Ba

[B. Bucher et al., PRL 116, 112503 (2016) & PRL 118, 152504 (2017)]

[SCCM: R.N. Bernard et al., PRC 93, 061302(R) (2016)]

Back-up

Octupole (NSCL)

Thank you very much to the GRETINA project management and team at LBNL.

M. Spieker, S. Baker, A.L. Conley, D. Houlihan, B. Kelly, P.D. Cottle, and K.W. Kemper

L.A. Riley

S. Agbemava, D. Bazin, S. Biswas, P.J. Farris, A. Gade, T. Ginter, S. Giraud, J. Li, W. Nazarewicz, S. Noji, J. Pereira, M. Smith, D. Weisshaar, and R.G.T. Zegers

K. Nomura

Acknowledgments

This work was supported by the National Science Foundation (NSF) under Grant No. PHY-2012522 (WoU-MMA: Studies of Nuclear Structure and Nuclear Astrophysics), Grant No. PHY-1565546 (NSCL), Grant No. PHY-2209429 (Windows on the Universe: Nuclear Astrophysics at FRIB), by the Department of Energy, Office of Science, Office of Nuclear Physics, Grant Nos. DE-SC0020451 and DE-SC0013365 (MSU), and by the Department of Energy, NNSA, Grant No. DOE-DE-NA0004074 (the Stewardship Science Academic Alliances program). GRETINA was funded by the Department of Energy, Office of Science. The operation of the array at NSCL was supported by the DOE under Grant No. DE-SC0019034. M.S. acknowledges support through the FRIB Visiting Scholar Program for Experimental Science 2020.

Electric Dipole Moment (EDM)

<u> Results</u>

Adopted 100(a) $B(E2) \downarrow [W.u.]$ Wimmer et al. 80 Gillespie et al. (p,p') - prev. work 60 (p,p') - this work 4020(b) $B(E3) \downarrow [W.u.]$ 2520151053500 (c)3000 $E_x [keV]$ 25002000 3_{1}^{-} 1500 $3^{-}_{2,(p,p)}$ 1000 707274 80 82 84 86 7678

[MS *et al.*, PRC **106**, 054305 (2022)] and other data from: [Wimmer *et al.*, EPJA **56**, 159 (2020); Wimmer *et al.*, PRL **126**, 072501 (2021); Pritychenko *et al.*, Nuclear Data Sheets **120**, 112 (2014); Gillespie *et al.*, PRC **104**, 044313 (2021); Matsuki *et al.*, PLB **113**, 21 (1982)]

Systematics in the Kr isotopes with $N \leq 50$

- Direct observable: (p,p') cross sections.
 (p,p') cross sections allow model-dependent
 - determination of deformation parameters β_{λ} . $\rightarrow B(E\lambda; 0^+_1 \rightarrow J^{\pi}_f)$ can be calculated.

Results:

Disclaimer

- Excellent agreement of B(E2; 2⁺₁ → 0⁺₁) to values determined with other probes.
- B(E3; 3⁻₁ → 0⁺₁) strengths fit well into systematics.
- $B\left(E3; 3^{-}_{2,(p,p')} \rightarrow 0^{+}_{1}\right)$ strengths, even though assigned tentatively in ^{74,76}Kr, show that strength remains fragmented.
 - \rightarrow Fragmentation appears nontrivial as 2nd 3⁻ is not necessarily 2nd strongest fragment.

B(E3) systematics in Ge-Kr mass region

 $B(E3; 3_{LEOS}^{-} \rightarrow 0_{1}^{+})$ strength is fragmented in Ge-Kr mass region.

[Rosier et al., NPA 453, 389 (1986); Schürmann et al., NPA 475, 361 (1987); Ogino, PRC 33, 71 (1986); Matsuki et al., PLB 113, 21 (1982)]

38

Introduction

B(E3) systematics in Ge-Kr mass region

Strength fragmentation different but most of the strength in $B(E3; 3_1^- \rightarrow 0_1^+)$.

[Rosier et al., NPA 453, 389 (1986); Schürmann et al., NPA 475, 361 (1987); Ogino, PRC 33, 71 (1986); Matsuki et al., PLB 113, 21 (1982)]

Prolate-oblate shape transition and triaxiality in Ge-Kr mass region

Shape transition in N = 39 isotones

Pairing delays shape transition in even-A isotopes?

[Heyde and Wood, RMP 83, 1467 (2011)]

From safe CoulEx

Prolate-oblate shape transition and triaxiality in Ge-Kr mass region

Discussion

Prolate-oblate shape transition and triaxiality in Ge-Kr mass region

[K. Sato and N. Hinohara, Nuclear Physics A 849, 53 (2011)]

Prolate-oblate shape transition in Kr isotopes

[In collaboration with S. Agbemava and W. Nazarewicz] 0.60This work - exp 0.50Adopted values Clément et al. (prolate) 0.40SkM* (prolate) NEDF1 (prolate) 0.300.20(a)0.100.25DD-PC1 (prolate) NL3* (prolate) 0.20(oblate) This work - exp. (pos. β_4) 0.15 β_4 Prev. (p,p') work - exp. 0.100.050.0030 $B(E4) \downarrow [W.u.]$ ♦ This work - exp. (neg. β₄) 25201510С 5 84 86 74767880 82 Α

^{74,76}Kr @ NSCL

[K. Sato and N. Hinohara, Nuclear Physics A 849, 53 (2011)]

- We were able to determine β₂ and β₄ from our inverse kinematics (p,p') experiments.
- Mixing between oblate and prolate configuration influences B(E2; 2⁺₁ → 0⁺₁) but appears to have only minor influence on B(E4; 4⁺₁ → 0⁺₁) strength. The latter is linked to prolate configuration.
- \rightarrow In agreement with CHFB+LQRPA predictions?

Understanding nuclear structure and octupole collectivity in Ge-Zr mass regions

One-proton knockout reactions

⁷⁰Se: K. Wimmer *et al.*, PLB **785**, 441 (2018) ^{72,74}Se: MS *et al.*, to be published

Is sudden increase of the partial (exclusive) cross section for the 4_1^+ state from ⁷²Se to ⁷⁰Se caused by a structure change?

45

Triangular octupole shape superimposed on oblatedeformed ground state

Triangular octupole coupling Y₃₃ in ⁶⁸Se

Qualitatively similar results obtained with three different Skyrme interactions.

Any alternating-parity bands?

If octupole deformed, should we not observe an alternatingparity band?

→ Intruder structure forms alternating-parity sequence with the negative-parity states in ⁹⁶Zr!

Why could this be interesting?

→ Intruder structure becomes ground state of 100 Zr. Intruder structure is "dominated" by proton $1g_{9/2}$.

47

Discussion

No add-back

Determining the target thickness

- Pressure difference between Kapton windows cause them to bulge outwards.
- Effect is quantified by simulating the kineticenergy distribution of the beam.
 - → Kinetic-energy distribution of incoming beam through empty cell is used as input.
- → Very good agreement between experimentally measured and simulated distribution for both ^{74,76}Kr.

Target thickness: 69(3) mg/cm²

[MS et al., to be published]

- Aluminum cell
- Different assemblies (50-200 mg/cm²)
- 125-mm Kapton foils (<2% C contaminant)
- 3-4 Ø cm
- Future: 400 mg/cm^2 @ HRS?

Courtesy of J. Pereira, L.A. Riley

The refrigerator system

Operation of LH₂ target system

- Evacuating system from air (~2 hours)
- Filling reservoir + target cell (~30 min)
- Cooling-down target cell (~3 hours)
- Remote monitoring of Gas-cell Pressure and Temperature
- Phase diagram: identify liquid stage → Running conditions

Strength increase not seen in the N = 38 and N = 40 Kr isotopes. So, what is going on?

[Rosier et al., NPA 453, 389 (1986); Schürmann et al., NPA 475, 361 (1987); Ogino, PRC 33, 71 (1986); Matsuki et al., PLB 113, 21 (1982)]

53

The state-of-the-art: GRETINA

Experiment

Gamma-Ray Energy Tracking In-Beam Nuclear Array

γ-ray tracking

(or why we do not need anti-Compton shields)

36 segments for one HPGe crystal

The state-of-the-art: GRETINA

Gamma-Ray Energy Tracking In-Beam Nuclear Array

