





## Opportunities for studying the Pygmy Dipole Resonance at FRIB M. Spieker

Theoretical Justifications and Motivations for Early High-Profile FRIB Experiments, FRIB-TA, May 2023



Introduction

#### Dipole strength distribution in nearly spherical atomic nuclei

Cartoon vs. Reality



Courtesy of A. Zilges (University of Cologne); see older version in FRIB400 white book

A. Tamii et al., PRL 107, 062502 (2011)

2



ntroduction

3

#### Different theoretical $\gamma$ SF for Zn isotopes



... Some  $\gamma$ SFs have no low-lying E1 or M1 component, only a "tail" of the IVGDR.

[Figure 1: P. Scholz, PhD thesis, University of Cologne (2019)] [Figure 2: S. Goriely, PLB 436 (1998) 10] [Review article: A.C. Larsen et al., PPNP 107, 69 (2019)]

#### Variations of up to a factor of 100!

Influence of the  $\gamma$ -ray strength function



#### Nuclear physics input:

- Masses
- $\beta$ -decay: T<sub>1/2</sub>, P<sub>n</sub>
- $(n,\gamma)$  rates
- Fission rates/yields



#### Neutron-star radii and properties – Insights from Nuclear Physics



= neutron – skin thickness

Measure the neutron skin (10<sup>-16</sup> m) and constrain possible neutron-star radii (10<sup>4</sup> m)

20 orders of magnitude difference



Studying the low-lying E1 strength at FRIB? (Isovector and isoscalar strength) CoulEx after 400 MeV/u upgrade



We might need to wait until the FRIB400 upgrade but with GRETA we should get quite a boost in resolution!



<sup>[</sup>N. Nakatsuka et al., PLB 768, 387 (2017)]

#### In search of statistics: Future PDR studies at RIB facilities



Up to 3p-3h excitations needed to describe low-lying E1 strength!

Introduction



#### To understand if it will matter out here! 8 (a) Neutron-rich Se Ge PDR fraction [%] Zn 6 Ar Ca Mg Si Kr Fe 4 · Test structure here... Zr 2 r-process regime 0 8 28 34 50 56 82 14 Neutron number [T. Inakura *et al.*, PRC **84**, 021302(R) (2011)]

Strength of PDR might be connected to occupation of low-*l* single-particle orbits

So, how do we test that? How about we start "easy" and not too exotic? We will probably need to make a good case to convince the PAC.

7



#### Single-particle structure studies of PDR with solenoidal spectrometers?



[T.L. Tang, B.P. Kay, C.R. Hofmann, et al., PRL 124, 062502 (2020)]



#### ReA stages @ FRIB

[SOLARIS White Paper]



of interest for PDR studies



A proposal

Use one-neutron (d,p) transfer reaction for carefully chosen "target" nucleus



#### Example of <sup>61</sup>Ni(d,p)<sup>62</sup>Ni measured at FSU SE-SPS

- Spectroscopic strength is already significantly fragmented. For the strongest states, the SF does not exceed ~0.1.
- E1 strength is also strongly fragmented in <sup>58,60</sup>Ni. [MS *et al.*, submitted for publication (2023)]
- $\rightarrow$  So, why not choose an easier case than this first?



# A proposal



#### Use one-neutron (d,p) transfer reaction for carefully chosen "target" nucleus

#### Example of <sup>61</sup>Ni(d,p)<sup>62</sup>Ni measured at FSU SE-SPS

- Spectroscopic strength is already significantly fragmented. For the strongest states, the SF does not exceed ~0.1.
- E1 strength is also strongly fragmented in <sup>58,60</sup>Ni. [MS *et al.*, submitted for publication (2023)]
- $\rightarrow$  So, why not choose an easier case than this first?

### How about <sup>50</sup>Ca populated through <sup>49</sup>Ca(d,p)?

- <sup>49</sup>Ca has known  $J^{\pi} = 3/2^{-}$  ground state.
- $\rightarrow J^{\pi} = 1^{-}$  states would be populated through l = 0and l = 2 angular momentum transfers.
- <sup>50</sup>Ca should be nearly spherical. Thus, the 3/2<sup>-</sup> should correspond to a 2p<sub>3/2</sub> configuration.
- E1 strength is not known but <sup>48</sup>Ca is well studied.
   We will, thus, need theoretical calculations.



<u>proposal</u>

Use one-neutron (d,p) transfer reaction for carefully chosen "target" nucleus



[P. Papakonstantinou et al., PLB 709, 270 (2012)]

Green: Isoscalar strength Black: Isovector strength

#### Example of <sup>61</sup>Ni(d,p)<sup>62</sup>Ni measured at FSU SE-SPS

- Spectroscopic strength is already significantly fragmented. For the strongest states, the SF does not exceed ~0.1.
- E1 strength is also strongly fragmented in <sup>58,60</sup>Ni. [MS *et al.*, submitted for publication (2023)]
- $\rightarrow$  So, why not choose an easier case than this first?

#### How about <sup>50</sup>Ca populated through <sup>49</sup>Ca(d,p)?

- <sup>49</sup>Ca has known  $J^{\pi} = 3/2^{-}$  ground state.
- $\rightarrow J^{\pi} = 1^{-}$  states would be populated through l = 0and l = 2 angular momentum transfers.
- <sup>50</sup>Ca should be nearly spherical. Thus, the 3/2<sup>-</sup> should correspond to a 2p<sub>3/2</sub> configuration.
- E1 strength is not known but <sup>48</sup>Ca is well studied.
   We will, thus, need theoretical calculations.



<u>proposal</u>

Use one-neutron (d,p) transfer reaction for carefully chosen "target" nucleus



#### Example of <sup>61</sup>Ni(d,p)<sup>62</sup>Ni measured at FSU SE-SPS

- Spectroscopic strength is already significantly fragmented. For the strongest states, the SF does not exceed ~0.1.
- E1 strength is also strongly fragmented in <sup>58,60</sup>Ni. [MS *et al.*, submitted for publication (2023)]
- $\rightarrow$  So, why not choose an easier case than this first?

```
How about <sup>50</sup>Ca populated through <sup>49</sup>Ca(d,p)?
<sup>49</sup>Ca has known J<sup>π</sup> = 3/2<sup>-</sup> ground state.
→ J<sup>π</sup> = 1<sup>-</sup> states would be populated in and l = 2 or in rate > 10<sup>6</sup> pps for <sup>49</sup>Ca! and l = 2 or in rate > 10<sup>6</sup> pps for <sup>49</sup>Ca! (10-kW estimate) (10-kW estimate)
µ=p<sub>3/2</sub> configuration.
Further the studied of the studied. We will, thus, need theoretical calculations.
```

#### Level of agreement between theory and experiment for <sup>48</sup>Ca



