PHY321 Homework Set 1

1. [5 pts] Expand $\sin x$ about the point $x=\pi / 4$. Hint: Represent the function as $\sin x=\sin (y+\pi / 4)$ and assume y to be small.
2. [5 pts] For the two vectors

$$
\vec{A}=\hat{i}-\hat{j}+2 \hat{k}, \quad \text { and } \quad \vec{B}=-2 \hat{i}+\hat{j}+3 \hat{k},
$$

find
(a) $\vec{A}-\vec{B}$ and $|\vec{A}-\vec{B}|$,
(b) component of \vec{B} along \vec{A},
(c) angle between \vec{A} and \vec{B},
(d) $\vec{A} \times \vec{B}$,
(e) $(\vec{A}+\vec{B}) \times(\vec{A}-\vec{B})$.
3. [10 pts] For a hill the elevation in meters is given by $z=10+0.5 x+0.25 y+0.5 x y-$ $0.25 x^{2}-0.5 y^{2}$, where x is the distance east and y is the distance north of the origin.
(a) Where is the top of the hill and how high is it?
(b) How steep is the hill at $x=y=1$, i.e. what is the angle between a vector perpendicular to the hill and the z axis?
(c) In which compass direction is the slope at $x=y=1$ steepest? Indicate whether the angle you provide is the angle measured in the standard way in the counterclockwise direction from x-axis (east) or whether it is the compass azimuth. The compass azimuth is normally measured in the clockwise direction from north.
4. [5 pts] Consider action of two forces, $\vec{F}^{A}(\vec{r})$ and $\vec{F}^{B}(\vec{r})$, on a particle. These forces depend on particle position \vec{r} and their components are given by

$$
F_{x}^{A}=F_{x}^{B}=y^{2}, \quad F_{y}^{A}=2 x y, \quad F_{y}^{B}=x y, \quad F_{z}^{A}=F_{z}^{B}=0,
$$

where the force components are in newtons and coordinates are in meters.
(a) Compute the work in joules done by the two forces, $W^{A}=\int \vec{F}^{A} \cdot \mathrm{~d} \vec{r}$ and $W^{B}=$ $\int \vec{F}^{B} \cdot \mathrm{~d} \vec{r}$, on the particle moving within the $x-y$ plane along a parabolic trajectory $y=x^{2}$ from $(x, y)=(0,0)$ to $(x, y)=(1,1)$. The coordinates in the equation for the trajectory are in meters. Hint: Under the integral write $\vec{F}^{A} \cdot \mathrm{~d} \vec{r}=$ $F_{x} \mathrm{~d} x+F_{y} \mathrm{~d} y=\left(F_{x}+F_{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \mathrm{d} x$ and carry out integration over x.
(b) Compute the work in joules done by the two forces, on the particle moving along another trajectory joining $(0,0)$ and $(1,1)$ and consisting of two straight at right angles to each other, first at constant y to $(x, y)=(1,0)$ and then at constant x to $(1,1)$. Compare the results to those obtained in 4a. Hint: Sketch the trajectory.
(c) Comment on your results. Can you draw any conclusions about the nature of the two forces?
5. [5 pts] Corners of a uniform horizontal flat triangular plate are at $(x, y)=(0,0),(0,1)$ and $(1,2)$, see the figure. Find the coordinates (X, Y) of the center of mass of that plate, by directly carrying out integrations within the mathematical definition for location of the center, $\vec{R}=\int \mathrm{d}^{2} r \vec{r} / \int \mathrm{d}^{2} r$.

