PHY321 Take-home Midterm 3
Due Monday April 21, 2014

1. A satellite is in a circular orbit of radius R around Earth (mass $M=$ $5.97 \times 10^{24} \mathrm{~kg}$).
(a) $[3 \mathrm{pt}]$ How is the velocity v of the satellite related to the radius R, mass M and gravitational constant G ?

$$
\frac{h v^{2}}{R}=\frac{M M G}{R^{2}} \Rightarrow V=\sqrt{\frac{M G}{R}}
$$

(b) $[3 \mathrm{pts}]$ What needs to be the radius R to make the orbit semisynchromous, i.e. with a period of 12 h ? (GPS satellites move on such orbits.) Obtain a value for R.
$V=\underset{\text { most for cervin }}{\text { mon }} \Rightarrow T=\frac{2 \pi R}{V} \Rightarrow T^{2}=\frac{4 \pi^{2} R^{2}}{v^{2}}=\frac{4 \pi^{2} R^{3}}{m G}$

$$
\Rightarrow R=\left[\frac{M G T^{2}}{4 \pi^{2}}\right]^{1 / 3}=(M G)^{1 / 3}\left(\frac{T}{2 \pi}\right)^{2 / 3}
$$

$$
\begin{aligned}
& M_{\text {earth }}=5.974 \times 10^{24} \mathrm{~kg} \\
& G=6.67 \times 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}^{2}} \\
& T=12 \mathrm{~K} \times \frac{3600 \mathrm{~s}}{\mathrm{k}}=4.32 \times 10^{4} \mathrm{~s}
\end{aligned}
$$

(c) [3 pts] Now imagine that the satellite has a parabolic orbit. If the satellite has the same angular momentum as it did for the circular orbit, how big is $r_{\text {min }}$ (i.e., the perihelion) compared to R in part

$$
\begin{aligned}
& \text { Parabola } \Rightarrow E=0 \Rightarrow 0=\frac{1}{2} m \int^{a} \cdot \dot{r}^{2}+\frac{l^{2}}{2 m r^{2}}-\frac{G m M}{r} \\
& \Rightarrow \frac{l^{2}}{2 m r_{\text {min }}^{2}}=\frac{G m M}{r_{\min }} \Rightarrow r_{\min }=\frac{l^{2}}{2 m^{2} M G}=\frac{m^{2} v_{\text {irc }}^{2} R_{\text {cir }}^{2}}{2 m^{2} M G} \quad \begin{array}{c}
\text { Sims } l_{\text {cir }}=l_{\text {parabola }} \\
\text { by assumption) }
\end{array} \\
& \Rightarrow r_{\text {min }}=\frac{V_{\text {cir }}^{2} R_{\text {irc }}^{2}}{2 M G} \overline{\text { part as }} \frac{\frac{A A G}{R_{\text {irc }}} R_{\text {irc }}^{2 /}}{2 N E G}=\frac{1}{2} R_{\text {cir }}
\end{aligned}
$$

Alternative sols to (c)
general sols for $U=-\frac{k}{r}$ potential is

$$
\frac{\alpha}{r}=1+\varepsilon \cos \theta
$$

$$
\alpha=\frac{l^{2}}{m k} \quad \text { and } \theta \equiv 0
$$

paula: $\varepsilon=1$

$$
\varepsilon=\sqrt{1+\frac{2 E V^{2}}{m k^{2}}} \text { at } r_{\min }
$$

$$
\left.\therefore \frac{\alpha}{r_{\text {min }}}=2 \Rightarrow r_{\text {min }}=\frac{\alpha}{2}\right\} r_{\min }=\frac{R_{\text {circle }}}{2}
$$

Circle: $\varepsilon=0 \Rightarrow \frac{\alpha}{R}=1 \Rightarrow R_{\text {circle }}=\alpha$
2. In the year 8050, a space voyage discovers a novel cylindrical planet in deep outer space of radius R and constant mass density ρ. The height of the cylindrical planet is much larger than R, so to a first approximation you can treat it as being infinitely long.
(a) $[4 \mathrm{pts}]$ Find the gravitational field vector for $r \leq R$.
(b) $[4 \mathrm{pts}]$ A very narrow hole is drilled in the radial direction from one side of the cylinder to the other. Show that if a mass m is dropped into the hole, it will execute simple harmonic motion. What is the angular frequency ω_{0} of this oscillation?
a.)

$$
\vec{g}=g(r) \hat{r}
$$

b.) $m \ddot{r}=F_{g r a v}=-2 \pi t \rho r$
3. A particle of mass m and angular momentum ℓ moves under the influence of a central force for which the potential energy is given by

$$
U(r)=\frac{c}{r^{2}}-\frac{k}{r}
$$

where c and k are positive constants.
(a) [3 pts] Sketch the effective potential energy $V_{e f f}=\frac{l^{2}}{2 m r^{2}}+U$, and indicate on the graph what the particle's energy must be for i) unbounded motion, ii) bounded motion between two turning points, and iii) circular motion.
(b) [2 pts $]$ Is it possible for the particle's energy to be less than the minimum value of $V_{e f f \mid}$? Explain why or why not.
(c) [3 pts] Determine the radius of a circular orbit of the above particle, expressing it in terms of ℓ, m, c and k.

(i) E_{1}) 0 unbounded motion $(M) V_{\text {eff }}^{m i n} L E_{2}$ LO bounded between $V_{\min }+V_{\max }$

$$
(\dot{M}) E_{3}=V_{\text {eff }}^{\text {min }}
$$

Circular motion at R

$$
\begin{aligned}
& \text { b.) No. } \begin{aligned}
& E=\frac{1}{2} m \dot{r}^{2}+V_{e f f} \Rightarrow \frac{1}{2} m \dot{r}^{2}=E-V_{e f f} \\
& \Rightarrow \text { if } E<V_{e f f,}^{m i r} \text { then } \frac{1}{2} m r^{2}<0 \text { impossible }
\end{aligned} \\
& \text { (c) } \begin{aligned}
\frac{d V_{e f f}}{d r}=0 & =-\frac{2}{r^{3}}\left(\frac{l^{2}+2 m c}{2 m}\right)+\frac{k}{r^{2}} \\
\Rightarrow r=\frac{\frac{l^{2}+2 m c}{m}}{k} & =\frac{l^{2}+2 m c}{m k}=\frac{\frac{l^{2}}{m+2 c}}{k}
\end{aligned}
\end{aligned}
$$

