S14 PHY321: Midterm 2

March 19, 2014
NOTE: Show all your work to maximize partial credit. No credit for unsupported answers.

Turn the front page only when advised by the instructor!

Check that your exam has all 3 problems. Total points: 15

Formulas pertaining to the material:
Rocket equation: $v=-g t+u \log \left(m_{0} / m\right)$
Damped harmonic oscillator equation: $\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=0$
General solution: $x(t)=\mathrm{e}^{-\beta t}\left[A_{1} \exp \left(\sqrt{\beta^{2}-\omega_{0}^{2}} t\right)+A_{2} \exp \left(-\sqrt{\beta^{2}-\omega_{0}^{2}} t\right)\right]$
Driven harmonic oscillator equation: $\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=A \cos \omega t$
Amplitude of stationary driven oscillations: $D=\frac{f}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \omega^{2} \beta^{2}}}$
Phase lag of driven oscillations: $\delta=\tan ^{-1}\left(\frac{2 \omega \beta}{\omega_{0}^{2}-\omega^{2}}\right)$
Avg. power in driven oscillator: $0=\left\langle P_{\text {drive }}\right\rangle+\left\langle P_{\text {damp }}\right\rangle$

1. A rocket is ascending against gravity. The rocket engine delivers a thrust of $\tau=1.50 \times 10^{5} \mathrm{~N}$.
(a) [1 pt] At what rate is the fuel being burnt, if the speed of the exhaust gas is $u=3050 \mathrm{~m} / \mathrm{s}$?
(b) [2 pts] What is the maximal mass m_{0} that this rocket could have for the take-off to occur right away?
(c) [2 pts] How long would it take for the rocket with the maximal mass m_{0} to reach the mass ratio of $m_{0} / m=3.50$?

$$
\begin{aligned}
& \text { a.) } \tau=\alpha \mu \Rightarrow \alpha=\frac{1.5 \times 10^{5} \mathrm{~N}}{3050 \mathrm{~m} / \mathrm{s}}=\frac{49.18 \frac{\mathrm{~kg}}{\mathrm{~s}}}{} \\
& \text { b.) } \tau \geq m_{0} g \Rightarrow m_{0}^{\max }=\frac{\tau}{g}=\frac{1.5 \times 10^{5} \mathrm{~N}}{9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=1.53 \times 10^{4} \mathrm{~kg}
\end{aligned}
$$

c.) $\frac{d m}{d t}=-\alpha=>m(t)=m_{0}-\alpha t$

$$
\begin{aligned}
& \frac{m(t)}{m_{0}}=1-\frac{\alpha}{m_{0}} t \\
\Rightarrow & t=\frac{m_{0}}{\alpha}\left(1-\frac{m(t)}{m_{0}}\right)=\frac{1.53 \times 10^{4}}{49.18}\left(1-\frac{1}{3.5}\right)
\end{aligned}
$$

$$
=2225
$$

2. A particle of mass m is moving along the x-axis under the influence of a conservative force for which the potential energy is given by

$$
U(x)=-B x^{2}+C x^{4}
$$

where B, and C are positive constants.
(a) [2 pt] Sketch the form of the potential energy function and qualitatively describe the motion of the particle for i) $E>0$ and ii) $U_{\min }<E<0$.
(b) $[3 \mathrm{pts}]$ Find the natural frequency ω_{0} of small oscillations of the particle for motion near the minima x_{0} of the potential energy, in terms of m, B, and C.
 (i.) E>0 putiib oscillates between $X_{1}+X_{2}$
(ii) $U_{\text {min }}<E C O$ partible osillates about one of the minima (between $X_{a}^{\prime}+X_{b}^{\prime}$ on the left one, between $X_{a}+X_{b}$ for the ripple minimum. Notes no motion between $x_{b}^{\prime}+x_{a}$ is passible.)

$$
\text { b). Find minimum } x_{0} \text { i }
$$

$$
\text { Near } x_{0}, U(x) \simeq \underset{\substack{\text { constant, } \\ \varphi_{\text {indre }}}}{\gamma}\left(x_{0}\right)+\left.\left(x-x_{0}\right) d \frac{d x}{d x}\right|_{x_{0}}+\frac{1}{2}\left(x-x_{0}\right)^{2} U^{\prime \prime}\left(x_{0}\right) \Rightarrow U(x) \simeq \frac{1}{2} U^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}
$$

$$
\text { Now, } U_{H_{0}}=\frac{K}{2}\left(x-X_{0}\right)^{2} \Rightarrow K=U^{\prime \prime}\left(X_{0}\right)=-2 B+12 C X_{0}^{2} \frac{\text { plugin }}{\overline{X_{0}}} 4 B
$$

ignore
3. A small object of mass m is positioned on a smooth plane and attached to walls on its two sides with stretched massless horizontal springs of spring constants k_{1} and k_{2}, as displayed in the figure.

(a) [1 pts] What is the net force acting on the mass m when it is in its equilibrium position? What is the net force acting on the mass m when it is displaced by x from the equilibrium position, expanding by that distance one of the springs and compressing the other?
(b) [2 pts] What is the angular frequency of oscillations about the equilibrium position, in absence of friction? Compute the value for $m=2.50 \mathrm{~kg}, k_{1}=6.50 \mathrm{~N} / \mathrm{m}$ and $k_{2}=3.50 \mathrm{~N} / \mathrm{m}$.
(c) $[2 \mathrm{pts}]$ If a friction force is further applied on the mass, opposite and proportional to the velocity, $F_{f}=-b \dot{x}$, with a proportionality constant of $b=0.80 \mathrm{~kg} / \mathrm{s}$, does the motion become underdamped, overdamped or critically damped?
a.) $F=O$ (oquibbim by definition. When displaced by x we have

Scratch Paper

Scratch Paper

