S14 PHY321: Midterm 1

February 7, 2014
NOTE: Show all your work in a neat and logical fashion to maximize your partial credit points. No credit will be given for unsupported answers.

Turn the front page only when advised by the instructor!

Total points for this exam: $\mathbf{2 5}$

1. For the vectors $\vec{A}=4 \hat{i}-5 \hat{k}$ and $\vec{B}=6 \hat{j}$, find
(a) $[2 \mathrm{pts}] \vec{C}=\vec{A} \times \vec{B}$ $\vec{C}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 4 & 0 & -5 \\ 0 & 6 & 0\end{array}\right|=30 \hat{\imath}+24 \hat{k}$
(b) [2 pts] the angle between \vec{A} and positive direction of the x-axis.

$$
\begin{aligned}
A_{x}=\vec{A} \cdot \hat{\imath}=|\vec{A}| \cos \theta \Rightarrow \theta & =\cos ^{-1}\left[\frac{A_{x}}{|\vec{A}|}\right]=\cos ^{-1}\left[\frac{A_{x}}{|\vec{A}|}\right]=\cos ^{-1}\left[\frac{4}{\sqrt{4 \mid}}\right] \\
& \Rightarrow \theta=51.3^{\circ}
\end{aligned}
$$

(c) [4 pts] A student measures $\vec{a}(t)$ and $\vec{v}(t)$ for a particle moving along the trajectory shown in the figure. Which measurement is obviously wrong and why?

(E) is wrong. This is because $\vec{a}=\vec{a}_{11}+\vec{a}_{1}$, where \vec{a}_{\perp} is perp. to trajectory. as discussed ins class, non-zero \vec{a}_{1} means the trajectons should curve in the director of \vec{a}_{\perp}. At (E), we selmin-zero \vec{a}_{\perp}, but the trajecting is totally straight, so it's wrong.
2. A car of mass m begins to coast at time $t=0$, while advancing at speed v_{0}. The car is subject simultaneously to a friction force from the wheels and from the ground, approximately independent of the car's velocity v, and to an air drag force that
 generally increases with v. These combine to a net force F which opposes the motion of the car. Find the dependence of v on time t, if the opposing force is given by:
(a) $[2 \mathrm{pts}] F=-A$, where A is a positive constant,

$$
\begin{aligned}
m \frac{d v}{d t}=-A & \Rightarrow V(t)-V(0)=-\frac{A}{m} t \\
& \Rightarrow V(t)=V_{0}-\frac{A}{m} t
\end{aligned}
$$

(b) [5 pts] $F=-A-B v$, where A and B are positive constants.

$$
\begin{aligned}
& \frac{m d v}{d t}=-A-B v \Rightarrow-\frac{d v}{A+B v}=\frac{1}{m} d t \\
& \int_{v_{0}}^{v} \frac{d v}{A+B v}=\frac{1}{B} \ln A+\left.B v\right|_{v_{0}} ^{v}= \frac{1}{B} \ln \left(\frac{A+B v}{A+B v_{0}}\right) \Rightarrow \frac{1}{B} \ln \left(\frac{A+B v}{A+B v_{0}}\right)=-\frac{t}{m} \\
& \frac{A+B v}{A+B v_{0}}=e^{-B t / m} \\
& \Rightarrow A+B v=\left(A+B v_{0}\right) e^{-B t / m} \\
& \Rightarrow v(A)=\frac{1}{B}\left(A+B v_{0}\right) e^{-B t / m}-\frac{A}{B}
\end{aligned}
$$

(c) $[2 \mathrm{pts}]$ Complete this problem by examining whether your answer $v(t)$ from 2 b reduces to that from 2 a when $B \rightarrow 0$.

$$
\begin{align*}
& e^{-B t / m} \approx 1-\frac{B t}{m} \text { as } B \rightarrow 0 \quad \therefore V(t) \approx\left(\frac{A}{B}+v_{0}\right)\left(1-\frac{B t}{m}\right)-\frac{A}{B} \\
& =A A-\frac{A}{B} \frac{B A}{m}+v_{0}-\frac{v_{0} B A}{m}-\frac{A}{B} \\
& \text { taling now } B \rightarrow 0 \\
& V(t) \rightarrow V_{0}-\frac{A}{m} t \quad J \tag{Over}
\end{align*}
$$

3. A particle of mass m_{1} and velocity \vec{u}_{1} strikes elastically a marticle of mass $m_{2}>m_{1}$, at rest. After the collision, the particle m_{1} emerges at a right angle to its original direction, as shown in the figure.

(a) [1 pt] What is the final velocity component $v_{2 x}$ of particle m_{2}, in terms of the particle masses and u_{1} ?

$$
\begin{aligned}
& m_{1} \mu_{1}=m_{2} v_{2 x} \quad \text { by } \quad p_{x}^{i m}=p_{x}^{f_{i}} \\
& v_{2 x}=\frac{m_{1}}{m_{2}} \mu_{1}
\end{aligned}
$$

(b) [1 pt] What is the velocity component $v_{2 y}$ of particle m_{2}, in terms of the masses and final speed v_{1} ?

$$
p_{y}^{\text {in }}=p_{y}^{\text {fin }}=0=m_{2} v_{2 y}+m_{1} v_{1 y} \Rightarrow v_{2 y}=-\frac{m_{1}}{m_{2}} v_{1 y}
$$

(c) $[4 \mathrm{pts}]$ Consider the energy and find v_{1} in terms of the data for the initial state, i.e. the masses and u_{1}.

$$
\begin{aligned}
& E^{\text {in }=} E^{\text {fin } \Rightarrow} \Rightarrow \frac{m_{1}}{2} \mu_{1}^{2}=\frac{m_{1}}{2} v_{1}^{2}+\frac{m_{2}}{2} v_{2}^{2} \\
& v_{1}^{2}=\mu_{1}^{2}-\frac{m_{2}}{m_{1}} v_{2}^{2} \quad \text { but } v_{2}^{2}=v_{2 x}^{2}+v_{2 y}^{2} \\
& \therefore v_{1}^{2}=\mu_{1}^{2}-\frac{m_{2}}{m_{1}}\left(\frac{m_{1}}{m_{2}}\right)^{2} \mu_{1}^{2}-\frac{m_{2}}{m_{1}}\left(\frac{m_{1}}{m_{2}}\right)^{2} v_{1}^{2}=\left(\frac{m_{1}}{m_{2}}\right)^{2} \mu_{1}^{2}+\left(\frac{m_{1}}{m_{2}}\right)^{2} v_{1}^{2} \\
& \Rightarrow v_{1}^{2}\left(1+\frac{m_{1}}{m_{2}}\right)=\mu_{1}^{2}\left(1-\frac{m_{1}}{m_{2}}\right) \Rightarrow v_{1}=\mu_{1} \sqrt{\frac{1-m_{1} / m_{L}}{1+m_{1} / m_{2}}}
\end{aligned}
$$

(d) [2 pts] If $m_{1}=1 \mathrm{~kg}, m_{2}=4 \mathrm{~kg}$ and $u_{1}=3 \mathrm{~m} / \mathrm{s}$, what is the net energy (in Joules) for the final state?

$$
E^{\text {in }}=E^{\text {out }}=\frac{1}{2} m_{1} \mu_{1}^{2}=\frac{1}{2}(1 \mathrm{~kg})\left(9 \frac{\mathrm{~m}^{2}}{s^{2}}\right)=\frac{9}{2}=4.5 \text { Joules }
$$

$\underline{\text { Scratch paper }}$

