Practice Midterm Exam \#1

Total points $=25$. Show all of your work!

1. [6 points] If $\mathbf{A}=5 \mathbf{i}$ and $\mathbf{B}=3 \mathbf{i}+4 \mathbf{j}$ find
(a) [2] A.B

$$
5 \hat{i} \cdot(3 i+4 j)=15
$$

(b) $[2] \mathrm{A}_{\mathbf{X}} \mathbf{B} \quad 5 \hat{\imath} \times(3 \hat{\imath}+4 \hat{\jmath})=20 \hat{k}$
(c) [2] The angle $\theta_{A B}$ between \mathbf{A} and \mathbf{B}.

$$
\begin{aligned}
& \cos \theta_{A B}=\frac{\bar{A} \cdot \bar{B}}{A B}=\frac{15}{5 \cdot \sqrt{3^{2}+4^{2}}}=\frac{15}{25}=\frac{3}{5}- \\
& \theta_{4 B}=\cos ^{-1} 0.6=53^{\circ}
\end{aligned}
$$

2. [7 points] Suppose that the frictional force on an object of mass m traveling through a fluid is proportional to the cube of the velocity: $\mathrm{F}=-\mathrm{mkv}{ }^{3}$ where k is a constant (and m is included to make the math a bit easier).
(a) [4] Find the velocity as a function of time, assuming that the initial velocity is v_{0} at time $t=0$. Neglect gravity. \qquad

$$
\frac{d v}{v^{3}}=-k d t \quad \int_{0}^{u} \frac{d v}{v^{3}}=-k \int_{0}^{t} d t=-\left.\frac{1}{2 v_{2}}\right|_{0} ^{v}=-k t
$$

(b) [3] After what time has the velocity slowed to half the initial velocity?

$$
\begin{aligned}
& -\frac{1}{2 v^{2}}+\frac{1}{2 v_{0}^{2}}=-k t \quad \frac{1}{v^{2}}-\frac{1}{v_{0}^{2}}=2 k t \\
& \frac{1}{v^{2}}=\frac{1}{v_{0}{ }^{2}+2 k t \Rightarrow v=\frac{1}{\sqrt{\frac{1}{v_{0} 2}+2 k t}}, \frac{1}{v}} \\
& \text { Note: There is another question on the next page! } \\
& \frac{1}{v_{0}^{2}}+2 k_{t}=\frac{4}{v_{0}^{2}}
\end{aligned}
$$

3. [12 points] An object of mass $\mathrm{m}_{0}=30 \mathrm{~kg}$. is launched at time $\mathrm{t}=0$ with a horizontal velocity of $40.0 \mathrm{~m} / \mathrm{s}$. (There is initially no vertical component to the velocity.)
(a) [2] What is the kinetic energy of the object, K_{i} (in Joules)?

$$
\begin{aligned}
K=\frac{1}{2} m v_{0}^{2}=\frac{1}{2} 30 \mathrm{~kg}\left(40 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}= & 30 \times 40 \times 20 \\
& =24000 \mathrm{~J}
\end{aligned}
$$

(b) [4] If the initial height of the object is $\mathrm{h}=1000 \mathrm{~m}$, what is the expected range, R (in meters), before it hits the ground? (Use the x origin as the point of launch, and use $\mathrm{g}=9.81 \mathrm{~m} . \mathrm{s}^{-2}$.)

$$
\begin{aligned}
& R=v_{0} t \quad h=\frac{1}{2} g t^{2} \quad t=\frac{\sqrt{2 h}}{g} \\
& R=v_{0} \sqrt{\frac{2 h}{g}}=40 \frac{\mathrm{~m}}{5} \sqrt{\frac{2 \times 1000 \mathrm{n}}{9.81 \mathrm{~m} / \mathrm{s}^{2}}}=571 \mathrm{~m}
\end{aligned}
$$

Unfortunately, immediately after the launch, the object explodes into two fragments (each of mass equal to one-half of the original object ($\mathrm{m}_{1}=\mathrm{m}_{2}=\mathrm{m}_{0} / 2=15 \mathrm{~kg}$) i.e. we are neglecting the mass of the explosive material). The explosion contributes an additional energy of $\mathrm{E}_{\text {ex }}=10.0 \mathrm{~kJ}$ (10000 Joules). The two fragments are ejected at right angles to the original line of flight of the initial object i.e. vertically in the CM frame, fragment m_{1} straight up and fragment m_{2} straight down.
(c) [6] Immediately after the explosion, what is the velocity (magnitude and angle relative

$$
\begin{aligned}
& \text { to the horizontal) of fragment } \mathrm{m}_{1} \text { relative to an observer on the ground? } \\
& \frac{1}{2} m_{1} v^{\prime 2}=\frac{1}{2} E_{x} \\
& \uparrow 25.8 \\
& \downarrow^{25.8} \\
& \vec{v}=\vec{v}+v^{\prime} \\
& v=\sqrt{v^{2}+v y^{2}}=\sqrt{25.8^{2}+40^{2}}=47.6 \\
& \theta=\tan ^{-1}(25.8 / 40)=32.8^{\circ} \\
& u y=v^{\prime}=25.8 \\
& u^{*}=V=40 \\
& \tan \theta=\frac{v^{4}}{v^{x}} \\
& =\frac{25.8}{40}
\end{aligned}
$$

