S13 PHY321: Final

NOTE: Show all your work. No credit for unsupported answers.

Turn the front page only when advised by the instructor!

The exam consists of 6 problems (60 points) plus one extra credit problem (10 points).

Contextual information

Damped harmonic oscillator equation: $\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=0$
General solution: $x(t)=\mathrm{e}^{-\beta t}\left[A_{1} \exp \left(\sqrt{\beta^{2}-\omega_{0}^{2}} t\right)+A_{2} \exp \left(-\sqrt{\beta^{2}-\omega_{0}^{2}} t\right)\right]$
Driven harmonic oscillator equation: $\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=A \cos \omega t$
Amplitude of stationary oscillations: $D=\frac{A}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \omega^{2} \beta^{2}}}$
Phase lag: $\delta=\tan ^{-1}\left(\frac{2 \omega \beta}{\omega_{0}^{2}-\omega^{2}}\right)$
Acceleration vector in polar coordinate: $\mathbf{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \mathbf{e}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \mathbf{e}_{\theta}$
$G=6.673 \times 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \mathrm{~s}^{2}}$
Calculus in spherical coordinates:
$\operatorname{grad} \Psi=\overrightarrow{\mathrm{e}}_{r} \frac{\partial \Psi}{\partial r}+\overrightarrow{\mathrm{e}}_{\theta} \frac{1}{r} \frac{\partial \Psi}{\partial \theta}+\overrightarrow{\mathrm{e}}_{\phi} \frac{1}{r \sin \theta} \frac{\partial \Psi}{\partial \phi}$
$\operatorname{div} \vec{A}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} A_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta A_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi}$
$\nabla^{2} \Psi=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Psi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \Psi}{\partial \phi^{2}}$

Orbits in a gravitational field:
$\frac{\alpha}{r}=1+\epsilon \cos \theta$
$a=\frac{k}{2|E|}$
$b=\frac{\ell}{\sqrt{2 \mu|E|}}$
$\alpha=\frac{\ell^{2}}{\mu k}$

1. Consider the two forces

$$
\vec{F}_{A}=(2 y, x, 0), \quad \text { and } \quad \vec{F}_{B}=(y+1, x, 0)
$$

where the force and position components are, respectively, in newtons and meters.
(a) [2 pts] Find magnitude of the force \vec{F}_{B} at the location $(x, y, z)=(-2,3,0)$.

$$
\vec{F}_{B}(-2,3,0)=4 \hat{\imath}-2 \hat{\jmath} \Rightarrow\left|\vec{F}_{B}\right|=\sqrt{16+4}=\sqrt{20}=4.47 \text { Newtons }
$$

(b) $[3 \mathrm{pts}]$ Find the angle that the force \vec{F}_{B} makes with the positive direction of the x-axis at the location $(x, y, z)=(-2,3,0)$.

$$
\begin{aligned}
& F_{B, x}=\vec{F}_{B} \cdot \hat{\jmath}=\left|\stackrel{\rightharpoonup}{F}_{B}\right| \cos \theta \Rightarrow \cos \theta=\frac{F_{B, x}}{\left|\vec{P}_{B}\right|}=\frac{4}{4.47}=.895 \\
& \Rightarrow \theta=\cos ^{-1}\left(\frac{4}{4.47}\right)=26.49^{\circ}
\end{aligned}
$$

(c) [5 pts] Are either of the forces conservative? If so, determine the corresponding potentials).
If $\vec{\nabla} \times \vec{F}=0$, then \vec{F} is conservative + can be written $\vec{F}=-\vec{\nabla} U$

$$
\hat{\nabla} \times \hat{F}=\left|\begin{array}{lll}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|=\hat{\imath}\left(\partial_{y} F_{z}-\partial_{z} F_{y}\right)+\hat{\jmath}\left(\partial_{z} F_{x}-\partial_{x} F_{z}\right)+\hat{k}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right)
$$

* We see $\vec{\nabla} \times \vec{F}_{A} \neq 0$ while $\vec{\nabla} \times \vec{F}_{B}=\hat{\imath}(0-0)+\hat{\jmath}(0-0)+\hat{k}(1-1)=0$
$\therefore \vec{F}_{B}$ is conservative. We find it using:
(1) $F_{x}=-\frac{\partial}{\partial x} U=y+1 \Rightarrow U(x, y)=-x y-x+C(y)$
(2) $F_{y}=-\frac{\partial U}{\partial y}=x=x-\frac{\partial C}{\partial y} \Rightarrow C=$ constant

$$
\therefore U=-x(y+1)+\text { const }
$$

2. A sailboat of mass m is moving on water, in the direction of wind. The sailboat is subject to two forces in the horizontal direction: $\vec{F}=\vec{F}_{a}+\vec{F}_{w}$, where \vec{F}_{a} is due to air and \vec{F}_{w} is due to water. The force of air is propelling the sailboat and it is proportional to the difference between the constant velocity of the wind \vec{v}_{0} and the boat velocity \vec{v}, $\vec{F}_{a}=A\left(\vec{v}_{0}-\vec{v}\right)$. The force of water resists the motion of the boat and is proportional to the boat velocity, $\vec{F}_{w}=-B \vec{v}$. Here, A and B are positive proportionality constants.

(a) $[2 \mathrm{pt}]$ For what velocity \vec{v} of the boat is the net horizontal force on the boat going to be zero?
(b) [8 pts] Find the dependence of the boat's velocity v on time t, when the boat starts from rest at $t=0$.

By taking the limit $t \rightarrow \infty$, verify that the expression you found is consistent with the answer to (a).

$$
\text { a.) } \begin{aligned}
& \vec{F}=0=A\left(\vec{v}_{0}-\vec{v}\right)-B \vec{v} \Rightarrow A \vec{v}_{0}-\vec{v}(A+B)=0 \\
& \therefore \vec{v}=\frac{A}{A+B} \vec{v}_{0}
\end{aligned}
$$

*per the erich discussed in clos, we try to "guess" $V_{\text {ITU }}$ by assuming $\frac{d}{d t} V_{\text {ItU }}=0$

$$
\left.\Rightarrow\left(\frac{A+B}{m}\right) V_{I H G}=\frac{A}{m} V_{0}=\right) \quad V_{I H G}=\frac{A}{A+B} V_{0}
$$

$$
\therefore V=C e^{-\frac{A+B}{m} t}+\frac{A}{A+B} v_{0}
$$

$$
\text { * Demanding } V(0)=0 \Rightarrow C=-\frac{A}{A+B} v_{0}
$$

$$
\Rightarrow v=\frac{A}{A+B} v_{0}\left(1-e^{-\frac{A+B}{m} t}\right)
$$

csch: $v(\infty)=\frac{A}{A+B} v_{0}$ as in punt a.)

$$
\begin{aligned}
& \text { b.) } \\
& m \frac{d v}{d t}=-B v+A\left(v_{0}-v\right)=-(A+B) v+A v_{0} \\
& \Rightarrow \frac{d v}{d t}+\left(\frac{A+B}{m}\right) v=\frac{A}{m} v_{0} \quad I H G \text { en } \Rightarrow v=v_{H G}+v_{\text {IAs }} \\
& \text { weer: } \frac{d}{d t} v_{H_{G}}=-\left(\frac{A+B}{m}\right) v_{H t} \Rightarrow v_{H G}=C e^{-\frac{A B}{m} t} \quad \text { CTBD pom } V(0)=0
\end{aligned}
$$

3. A small object of mass m is positioned on a smooth plane and attached to walls on its two sides, at $x=0$ and $x=L$, with stretched massless horizontal springs of spring constants k_{1} and k_{2},
 respectively, as displayed in the figure.
The unstretched lengths of both springs are negligible.
(a) $[2 \mathrm{pts}]$ Find the equilibrium position x_{0} for the mass.

$$
\left.\begin{array}{rl}
F_{1} & =-K_{1} x_{0} \\
F_{2} & =K_{2}\left(L-x_{0}\right)
\end{array}\right\} \quad \begin{aligned}
F=F_{1}+F_{2} & =0=-x_{0}\left(K_{1}+K_{2}\right)+K_{2} L \\
& \Rightarrow X_{0}=\frac{K_{2}}{k_{1}+K_{2}} L
\end{aligned}
$$

(b) [2 pts] What is the net force acting on the mass in the x direction, if the mass is at a location $x, x \neq x_{0}$ and $0<x<L$?

$$
\begin{aligned}
F_{1}=-k_{1} x \\
F_{2}=k_{2}(L-x)
\end{aligned} \quad F=F_{1}+F_{2}=-\left(k_{1}+k_{2}\right) x+k_{2} L \quad * \operatorname{lat} L=x_{0} \frac{k_{1}+k_{2}}{k_{2}}
$$

(c) $[4 \mathrm{pts}]$ What is the angular frequency of oscillations about the equilibrium position, in absence of friction? Compute the value for $m=2.50 \mathrm{~kg}, k_{1}=3.50 \mathrm{~N} / \mathrm{m}, k_{2}=1.50 \mathrm{~N} / \mathrm{m}$ and $L=0.90 \mathrm{~m}$. Are all constants needed?

$$
\begin{aligned}
\omega_{0} & =\sqrt{\frac{k_{\text {ell }}^{m}}{m}} \text { where } k_{\text {elf }}=k_{1}+k_{2} \quad(\text { seepart b) } \\
& =\sqrt{\frac{35+1.5}{2.5}}=\sqrt{2}=1.41 \frac{\mathrm{rad}}{\mathrm{~s}}
\end{aligned}
$$

(d) [2 pt] If a friction force acts on the mass, opposite and proportional to velocity, $F_{f}=-b \dot{x}$, with a proportionality constant of $b=0.80 \mathrm{~kg} / \mathrm{s}$, is the motion underdamped, overdamped or approximately critically damped?

$$
\begin{aligned}
\beta & =\frac{b}{2 m}=\frac{.8}{5}=.16<w_{0} \\
& \Rightarrow \text { Underdanpled. }
\end{aligned}
$$

4. A spherical planet of radius R has a density ρ that is the largest at its center, and decreases with distance r from the center as $\rho(r)=$ $A(2 R-r)$, where A is a constant with the appropriate units.
(a) $[4 \mathrm{pts}]$ Determine the mass of the planet.

$$
\begin{aligned}
m & =\int \rho(r) d^{3} r=4 \pi \int_{0}^{R} \rho(r) r^{2} d r \\
& =4 \pi A \int_{0}^{R}\left(2 R r^{2}-r^{3}\right) d r=4 \pi A\left[\frac{2}{3} R^{4}-\frac{R^{4}}{4}\right] \\
& =\frac{4 \pi A}{12} \cdot\left[8 R^{4}-3 R^{4}\right]=\frac{5 \pi A}{3} R^{4}=M
\end{aligned}
$$

(b) [6 pts] Determine the gravitational field at distance r from the center of the planet.

$$
\begin{aligned}
& \text { inter of the planet. } \\
& Q_{S} \vec{g} \cdot d \vec{r}=-4 \pi 6 M_{\text {enc }} \quad \psi \text { tale } S=\text { sphere robbins } r \\
& g(r) y t r^{2}=-4 \not \subset G M_{e n c}^{(r)} \\
& \Rightarrow g(r)=-\frac{G M_{e n c}}{r^{2}}
\end{aligned}
$$

* for $r>R, M_{\text {enc }}(r)=M$ form punt a).

$$
\text { * for } r<R, M_{\text {enc }}(r)=4 \pi A\left[\frac{2}{3} R r^{3}-\frac{r^{4}}{4}\right]
$$

5. A satellite is in a circular orbit of radius R around Earth (mass $M=$ $5.97 \times 10^{24} \mathrm{~kg}$.
(a) $[2 \mathrm{pt}]$ How is the velocity v of the satellite related to the radius R, mass M and gravitational constant G ?

$$
\begin{aligned}
& \frac{m v^{2}}{R}=\frac{G m M}{R^{2}} \\
& \Rightarrow v^{2}=\frac{G M}{R} \Rightarrow v=\sqrt{\frac{G M}{R}}
\end{aligned}
$$

(b) [4 pts] What needs to be the radius R to make the orbit semisynchronous, i.e. with a period of 12 h ? (GPS satellites move on such orbits.) Obtain a value for R.

$$
\begin{aligned}
& \tau=\frac{2 \pi R}{v}=2 \pi R \times \sqrt{\frac{R}{G M}}=\frac{2 \pi R^{3 / 2}}{\sqrt{6 m}} \\
& R^{3 / 2}=\frac{\sqrt{G m} \tau}{2 \pi} \Rightarrow R=\left(\frac{\sqrt{G m} \tau}{2 \pi}\right)^{2 / 3}=26,601 \mathrm{~km}
\end{aligned}
$$

(c) [4 pts] Now imagine that the satellite has a parabolic orbit. If the satellite has the same angular momentum as it did for the circular orbit, how big is $r_{\text {min }}$ (i.e., the perihelion) compared to R in part a.

$$
\begin{aligned}
\frac{\alpha}{r_{\text {min }}} & =1+\varepsilon \\
& \therefore r_{\text {min }}=\frac{\alpha}{2}=\frac{R}{2} \quad(\text { recall }, R=\alpha)
\end{aligned}
$$

6. Consider a pendulum consisting of a mass m suspended by a massless spring. The spring has a unextended length of b, and a spring constant k. The pendulum is in a uniform gravitational field g.
(a) [5pts] Using Newton's formulation of mechanics (i.e., $\mathbf{F}=m \mathbf{a}$), find equations of motion for the mass in terms of the variables r and θ. (Note: The acceleration vector in polar coordinates is given on the formula sheet.)

$$
\begin{aligned}
& F_{r}=m g \cos \theta-k(r-b) \\
& F_{\theta}=-m g \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
& \therefore F_{r}=m a_{r} \Rightarrow m\left(\ddot{r}-r \dot{\theta}^{2}\right)=m g \cos \theta-k(r-b) \\
& F_{\theta}=m a_{\theta} \\
&=m(r \ddot{\theta}+2 \dot{r} \dot{\theta})
\end{aligned}
$$

(b) [5pts] Using the Lagrangian formulation of mechanics, find the Euler-Lagrange equations for r and θ. Should they agree with part a)?

$$
\begin{aligned}
& T=\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right) \text { and } U=-m g r \cos \theta+\frac{1}{2} k(r-b)^{2} \\
& \Rightarrow L=\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)+m g r \cos \theta-\frac{1}{2} k(r-b)^{2}
\end{aligned}
$$

$E L \sin \theta: \quad \frac{\partial L}{\partial \theta}=-m g r \sin \theta$

$$
\left.\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=\frac{d}{d t}\left(m r^{2} \dot{\theta}\right)=m r^{2} \dot{\theta}+2 m r \dot{r} \dot{\theta}\right\}
$$

$$
\Rightarrow \ddot{\theta}+2 \frac{\dot{r} \dot{\theta}}{r}+\frac{g}{r} \sin \theta=0
$$

* Ht agrees w/punt a) as it should.

7. [Extra Credit] A simple pendulum consists of a massless rod of fixed length b with a mass m attached to the end. There is a uniform gravitational field g pointing downwards. Starting at $t=0$, the pendulum is moved upward with uniform acceleration a.
(a) [4 pts] Write down the Lagrangian in the appropriate set of generalized coordinates. (Hint: Start in cartesian coordinates, and write x, y in terms of θ, b, a, and t.)

$$
\begin{aligned}
& x=b \sin \theta \quad \dot{\dot{x}}=b \dot{\theta} \cos \theta \\
& \left.y=\frac{a t^{2}}{2}-b \cos \theta\right\} \Rightarrow y^{6}=a t+b \dot{\theta} \sin \theta \\
& T=\frac{m}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)=\frac{m}{2}\left(b^{2} \dot{\theta}^{2} b \rho^{2} \theta+a^{2} t^{2}+b^{2} \dot{\theta}^{2} \sin ^{2} \theta+2 a t b \dot{\theta} \sin \theta\right) \\
& \Rightarrow T=\frac{m}{2}\left(b^{2} \dot{\theta}^{2}+a^{2} t^{2}+2 a+b \dot{\theta} \sin \theta\right) \\
& U=m g y=m g\left(\frac{a t^{2}}{2}-b \cos \theta\right) \\
& \Rightarrow L=T-U=\frac{m}{2}\left(b^{2} \theta^{2}+a^{2} t^{2}+2 a t b \dot{\theta} \sin \theta\right)-m g\left(\frac{a t^{2}}{2}-b \cos \theta\right)
\end{aligned}
$$

(b) $[3 \mathrm{pts}]$ Derive the Euler-Lagrange equation of motion.

$$
\begin{aligned}
& \frac{\partial L}{\partial \theta}=m a t b \dot{\theta} c o \theta-m y b \sin \theta \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=\frac{d}{d t}\left[m b^{2} \dot{\theta}+m a t b \sin \theta\right]=m b^{2} \dot{\theta}+m a t b \dot{\theta} c o+m a b \sin \theta \\
= & m b^{2} \theta+m a t b \dot{\theta} \cos \theta+m a b \sin \theta=m a t b \dot{\theta} c o \theta-m g b \sin \theta \\
= & \ddot{\theta}+\left(\frac{a+g}{b}\right) \sin \theta=0
\end{aligned}
$$

(c) $[3 \mathrm{pts}]$ Find the period of oscillations in the limit of small θ.

Scrap Paper

Scrap Paper

