S13 PHY321: Midterm 2

March 15, 2013
NOTE: Show all your work to maximize partial credit. No credit for unsupported answers.

Turn the front page only when advised by the instructor!

Check that your exam has all 4 problems. Total points: $\mathbf{2 5}$

Formulas pertaining to the material:
Rocket equation: $v=-g t+u \log \left(m_{0} / m\right)$
Damped harmonic oscillator equation: $\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=0$
General solution: $x(t)=\mathrm{e}^{-\beta t}\left[A_{1} \exp \left(\sqrt{\beta^{2}-\omega_{0}^{2}} t\right)+A_{2} \exp \left(-\sqrt{\beta^{2}-\omega_{0}^{2}} t\right)\right]$
Driven harmonic oscillator equation: $\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=A \cos \omega t$
Amplitude of stationary driven oscillations: $D=\frac{f}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \omega^{2} \beta^{2}}}$
Phase lag of driven oscillations: $\delta=\tan ^{-1}\left(\frac{2 \omega \beta}{\omega_{0}^{2}-\omega^{2}}\right)$
Avg. power in driven oscillator: $0=\left\langle P_{\text {drive }}\right\rangle+\left\langle P_{\text {damp }}\right\rangle$

1. A circular plate of radius $r_{1}=30 \mathrm{~cm}$ has a circular hole of radius $r_{2}=10 \mathrm{~cm}$. The plate serves as a target for different projectile particles moving along the z-axis.
(a) [2 pts] What is the cross section for the target plate getting hit by a point projectile particle, when the plate is perpendicular to the z-axis?
(b) [2 pts] What is the cross section for the plate getting hit by a point projectile particle, when the plate is inclined at an angle of $\theta=60^{\circ}$ to the z-axis, rather than perpendicular?
(c) [2 pts] What is the cross section for the target plate getting hit by a spherical projectile particle, of radius $a=15 \mathrm{~cm}$, while the plate is perpendicular to the z-axis?

$$
\begin{aligned}
& \text { a.) } \sigma=\pi\left(r_{1}^{2}-r_{2}^{2}\right)=\pi\left(30^{2}-10^{2}\right)=2513 \mathrm{~cm}^{2} \\
& \text { b.) } \sigma=\sigma_{(a)} \times \cos \theta
\end{aligned}
$$

$$
\text { C.) Sim is } a=15 \mathrm{~cm}>r_{2} \text {, hole doesit mattes }
$$

$$
\therefore \sigma=\pi\left(r_{1}+a\right)^{2}
$$

2. A rocket of initial mass $m_{0}=1.50 \times 10^{4} \mathrm{~kg}$, equipped with an engine for which the speed of exhaust gas is $u=3100 \mathrm{~m} / \mathrm{s}$, is prepared for a vertical take-off from the ground.
(a) [2 pts] What minimal thrust does the engine need to develop for the rocket to take off from the ground right away?
(b) $[2 \mathrm{pts}]$ At what rate would the fuel burn then?
(c) $[3 \mathrm{pts}]$ How long would it take for the rocket to reach the mass ratio of $m_{0} / m=4.2$, under those circumstances?
a.) $T \geq \operatorname{mog}$
b) $T=\alpha \mu \Rightarrow \alpha=\left|\frac{\mid d n}{d t}\right|=\frac{I}{\mu}$

$$
\begin{aligned}
\text { c) } \frac{d m}{d t}=-\alpha=m(t)-m_{0} & =-\alpha t \\
t & =\frac{m_{0}-m(t)}{\alpha}=\frac{m_{0}}{\alpha}(1-4.2
\end{aligned}
$$

3. A particle of mass m is moving along the x-axis under the influence of a conservative force for which the potential energy is given by

$$
U(x)=B+C x+R x^{2}
$$

where B, C and R are constants.
(a) $[1 \mathrm{pt}]$ Determine the equilibrium point x_{0} for the particle, in terms of B, C, R and m.
(b) [1 pt] What conditions, if any, must be satisfied by the constants to make x_{0} a stable equilibrium point?
(c) [3 pts] Find the period τ_{0} of oscillations of the particle about the stable x_{0}, in terms of B, C, R and m.
a.) $\left.\frac{d U}{d x}\right|_{x_{0}}=0=C+2 R x_{0} \Rightarrow x_{0}=-\frac{c}{2 R}$
b.) $\left.\frac{d^{2} u}{d x^{2}}\right|_{x_{0}}>0 \Rightarrow 2 R>0=2 R 0$
C) $\begin{aligned} \text { (} \operatorname{car} x_{0} \text {, we Taylor expand } U(x) & \simeq \int\left(x_{0}\right)+\left.\left(x-x_{0}\right) \frac{d y}{d x}\right|_{x_{0}}+\left.\frac{1}{2}\left(x-x_{0}\right)^{2} \frac{d^{2} U}{d x^{2}}\right|_{x_{0}} \\ & \Longrightarrow U(x) \simeq \frac{1}{2}\left(x-x_{0}\right)^{2} U^{\prime \prime}\left(x_{0}\right)\end{aligned}$

$$
\Rightarrow U(x) \simeq \frac{1}{2}\left(x-x_{0}\right)^{2} U^{\prime \prime}\left(x_{0}\right)
$$

$\Rightarrow F=-\frac{d U}{d x}=-\left(x-x_{0}\right) U^{\prime \prime}\left(x_{0}\right)$ compme to $F=-K\left(x-x_{0}\right)$ (Hook's Lur)
$\Rightarrow K=U^{\prime \prime}\left(x_{0}\right)=2 R$

$$
\tau_{0}=\frac{2 \pi}{\omega_{0}}=2 \pi \sqrt{\frac{m}{2 R}}
$$

4. A particle of mass m, attached to a spring of spring constant k and subject to a damping force, is driven in one dimension by a force depending sinusoidally on time. The equation of motion of the particle is:

$$
m \ddot{x}+b \dot{x}+k x=F_{0} \cos (\omega t)
$$

where m, b, k, F_{0} and ω are constants.
(a) [2 pts] In a steady-state motion, the amplitude for the displacement of the particle is D. What is the amplitude for the velocity of the particle then, in terms of D and the constants above?
(b) $[3 \mathrm{pts}]$ What is the average rate at which the damping force carries out work on the particle, when the driving frequency is ω and the amplitude of steady-state motion is D, again in terms of D and the constants above?
(c) [2 pts] What is the average rate at which the driving force carries out work on the particle then?

$$
\begin{aligned}
& \text { a.) } \\
& X(t)=D(\omega) \cos (\omega t-\delta) \\
& \dot{x}(t)=-\omega D(\omega) \sin (\omega t-\delta) \\
& \Rightarrow \\
& p_{0}^{(n)=\omega D(\omega)} \\
& \text { on formula set } \\
& \text { b.) } d w=F_{\text {tamp }} d x \Rightarrow \frac{d W}{d t}=F_{\text {damp }} \dot{x}=-b \dot{x}^{2} \\
& \Rightarrow\left\langle\frac{d W}{d t}\right)_{\text {dump }}=-\frac{b D^{2}(w) W^{2}}{2}
\end{aligned}
$$

