
SpecTk: a displayer for NSCL SpecTcl
D. Bazin

National Superconducting Cyclotron Laboratory, Michigan State University
East Lansing, MI 48823, USA

I. Introduction
One of the main assets of Tcl∕Tk is the ability to create easy-to-use packages and li-

braries. In many other forms of programming, the effort necessary to reuse existing
resources often outweighs the benefits, leading to frequent cycles of “reinventing the
wheel”. The program SpecTk described in this paper wouldn’t have been written with-
out the existence of the BLT1 and Incr Tcl2 packages. In fact, the inspiration for creating
this program came while using the BLT package in a simpler application. Because it is
aimed at displaying numerical data, this package provides most of the resources re-
quired to build an efficient, professional-looking and user-friendly displayer for the
NSCL SpecTcl data analysis program3. The resources that are not available from the
package had to be implemented in C++ because of the required speed, but here again
the API provided by the BLT package proved essential to the ease of implementation.
The Incr Tcl package provides an elegant and simple object-oriented framework which
has the added advantage of automatically isolating class objects in their own
namespaces.

This paper describes the motivation behind the SpecTk displayer program, the
functionalities it provides and their purpose, as well as its overall architecture. The em-
phasis focusses on the ways the Tcl∕Tk scripting language and its derived packages can
be efficiently and easily used to implement the various components of this application.
It should be noted that the author of this program is not a programmer nor a computer
scientist, but a physicist in nuclear science who takes programming as a serious hobby.
Although this may look like a disadvantage from a programmer’s point of view, it gives
the author a unique opportunity to build the best suited tools, thanks to his first-hand
end-user experience acquired during daily work on experiments, as well as his interac-
tion with students and scientists analyzing data.

1 The BLT library, by G. A. Howlett

2 The Incr Tcl library, by M. McLennan

3 The SpecTcl Data Analysis System, R. Fox, C. Bolen, K. Orji and J. Venema, Proceedings of the 2003 IEEE Con-
ference on Real-Time Applications of Computers in Nuclear, Particle and Plasma Physics

II. Motivation
In experimental nuclear physics like in most other science domains nowadays, ob-

servation relies primarily on indirect detection of phenomena through an ensemble of
devices. The experimenter has a mental representation of the phenomena, and carries
this concept through an understanding of the devices, all the way to the visualization of
data returned by those devices. It is therefore of utmost importance that the last link in
this chain of representation - the displayer showing the data - be accurate and meaning-
ful. The relationship between the visualized data and the measure of the actual phe-
nomena - what is called an “observable” in quantum mechanics - is so far reached and
fragmented that extensive analysis needs to be performed on the data to before it can
lend itself to an interpretation.

The primary purpose of the NSCL SpecTcl data analysis program is to establish a
link between the data recorded from the devices, usually in an event-driven format, and
the experimenter via visualization of this data in its raw form and/or some more so-
phisticated and meaningful combination or subset of it. To be able to perform this task
while the experiment is taking place is crucial for diagnostic purposes, in particular
when it involves extracting information in meaningful units such as distance or energy
for instance. The motivation for creating a displayer for the NSCL SpecTcl program
came from - as often the case in programming - frustration and struggle with the exist-
ing tool to visualize the data, and the recognition that the BLT library had most of the
resources required to do a better job. In addition, the NSCL SpecTcl data analysis pro-
gram being based on Tcl∕Tk, it seemed natural to build a displayer also based on the
same framework (the existing displayer was actually written for a previous analysis
program, prior to NSCL SpecTcl), with the many associated programming advantages.

III.Design and architecture
1. Design requirements

The customary way of representing event-driven data is via the use of histograms.
A histogram is a frequency distribution of one or two parameters, ordered in discrete
chunks also called bins. The number of bins to display the frequency distribution can
be chosen arbitrarily and only affects the precision of the representation of the parame-
ter(s). The width of a bin corresponds to the range of parameter values for which each
event will increment that same bin. The limitation to two parameters is purely techni-
cal, because an additional dimension is needed for the frequency axis, and we live in a
three-dimensional world. Also, memory requirements grow exponentially with dimen-
sion. As a result, the multi-dimensional space defined by the many parameters in-
volved in a typical experiment can only be explored through one- or two-dimensional
projections. In addition, it is almost always necessary to restrict the data to subsets,

thereby involving the use of filtering objects also called gates, which test single or pairs
of parameters and condition individual histograms. A displayer must therefore be able
to display and manipulate all these objects in an interactive way with the data analysis
program.

The design of SpecTk is based on the following requirements:

• Visualize and inspect histograms in a variety of ways
• Superimpose histograms for visual comparison
• Visualize many histograms simultaneously on pages
• Label histogram condition and axis with relevant information
• Provide easy access to

large number of histo-
grams

• Display, create and ma-
nipulate gates or
regions-of-interest (ROI)

• Perform basic statistics
calculations such as fits
and integrals on data

• Possibility to connect to
different source of data

2. Network architec-
ture
The last item in the

requirement list can be
nicely met using the
client-server mechanism
provided in Tcl∕Tk. Us-
ing TCP/IP network con-
nections between the NSCL SpecTcl data analysis program and one or more SpecTk
displayer(s) is illustrated in figure 1. This architecture has several advantages:

• it isolates the displayer from the analysis program as a separate process, possibly on a
different machine,

• many displayer clients can connect to the same analysis server, therefore the same
data can be visualized by different users at different locations,

• a user may switch between different analysis servers without having to restart the
displayer,

• in case the analysis server hangs, the data stored locally on the displayer can be saved,

Node 1 Node 2

Node 3

SpecTcl
Server

SpecTcl
Server

SpecTk
Client

SpecTk
Client SpecTk

Client

SpecTk
Client

Figure 1: illustration of the client-server architecture used be-
tween the analysis program SpecTcl and the displayer SpecTk.
The TCP/IP protocol used in Tcl/Tk allows connections across
nodes. Note that the communication is double-sided, as the
server can accept requests from any of its clients.

• minimal modifications of the analysis program are needed.
The price to pay for this architecture is the time to transfer the histogram data be-

tween the server and its clients, which is in principle longer through a network connec-
tion than if the displayer were embedded in the analysis program. However, this can be
efficiently optimized using binary format and compression, and doesn’t limit the per-
formance of the displayer with today’s network performances.

In order to convert the SpecTcl analysis program into a server, a few modifications
are necessary. Two additional Tcl commands to obtain and compress the histogram data
are implemented in C++, for one- and two-dimensional data respectively. These com-
mands automatically switch between absolute or indexed modes, depending on which
results into the least amount of bytes to transmit. In the absolute mode, all bins of the
histogram are transmitted, whereas only non-zero bins are taken into account in the
indexed mode. The other modification consists of re-routing existing SpecTcl com-
mands to make them communicate with the clients. That way, whenever one of these
commands is issued in SpecTcl, it notifies all the clients which respond by updating the
relevant information. This feedback mechanism makes the displayer(s) very responsive
and is necessary in order for them to reflect the state of the analysis program at all
times. The rename Tcl∕Tk command provides a very elegant way of implementing this
functionality. The Tcl∕Tk server script
added to the SpecTcl startup script sim-
ply renames the existing commands be-
fore redefining them. Each command
then executes the original SpecTcl com-
mand and then notifies each of the clients
with the same arguments. The server in
SpecTcl is implemented as a separate safe
interpreter which only responds to the
relevant commands for security reasons.

3. Data representation
The BLT library provides objects

called “vectors” which are one-
dimensional arrays of real numbers.
These vectors are intimately tied to the
display widgets of BLT, which makes
them the prime choice for storing the
histogram data received from the server.
In addition, several mathematical operations are available and can be efficiently used to
perform statistical calculations on the data. The representation of one-dimensional his-

Figure 2: example of the representation of a
one-dimensional histogram. The customary
way of displaying the bins uses the step repre-
sentation, but all other possibilities offered by
the BLT package are available, including sym-
bols with optional error bars.

togram data in graph widgets is straightforward, thanks to the functionalities provided
by the BLT library. The vector containing the data is simply displayed as an element of
the graph, while the horizontal axis is set
to the limits of the histogram (see figure
2). In case the number of bins is larger
than the number of screen pixels, all bins
are superimposed on the same pixel,
which corresponds to the least loss of
information.

Because in most cases the data in
two-dimensional histograms is clustered,
its storage is usually most memory-
savvy using indexing rather than arrays.
The other advantage of indexing is the
ease it provides for performing statistical
calculations. The most common way of
representing two-dimensional histogram
data uses color coding for the third dimension of frequency. Such a representation is
not provided in the BLT package, and is implemented in C++ in SpecTk. The API pro-
vided for vectors in BLT, however, dramatically simplifies the task. The command
Set2DImage implemented for that purpose takes the three BLT vectors containing the x
and y indexes and frequencies corresponding to a two-dimensional histogram, and fills
a Tcl photo image according to a chosen set of thresholds and colors. An example of the
representation of a typical two-dimensional histogram is shown in figure 3. The Tcl
photo image is simply superimposed on the
BLT graph as an image marker while the
axis limits are adjusted to the viewed
area. Similarly to the one-dimensional
case, only the bin with the maximum
number of counts is displayed when
fewer pixels than bins are available. This
is consistent with the behavior of a sur-
face plot where the smaller data is hidden
under the surface.

4. Internal architecture
A simplified schematics of the inter-

nal architecture of SpecTk is shown on
figure 4. Two different types of classes

Figure 3: example of the representation of a
two-dimensional histogram. Note the fre-
quency color scale on the left.

Figure 4: simplified diagram of SpecTk internal
architecture. See text for details.

Main tabbed notebook widget

class Page

class Display1D

class Display2D

graph
widget

graph
widget

class Wave1D

vector
objects

class Wave2D

vector
objects

class ROI

class ROI

called Wave1D and Wave2D encapsulate one- and two-dimensional histogram data.
Filtering objects such as region-of-interest (ROI) and gates are contained in ROI classes.
The Wave classes contain BLT vectors to store the data, as well as all other information
relevant to the histograms. The vectors are used directly as elements in the graph
widgets for one-dimensional histograms, and through the Set2DImage command for
two-dimensional histograms. The ROI objects are used by both the graph widgets to
display filtering objects via markers, and the Wave classes to perform statistical calcu-
lations. The main display of SpecTk contains a tabnotebook widget in which pages
can be defined. Each Page object in turn contains display panels in the form of Dis-
play1D and Display2D objects. The graph widgets are embedded in those two classes.

IV.Functionalities
In well designed applications, it is often desirable to provide the users with different

ways of performing the same action. In the case of a displayer program, the typical
example is the action of zooming in and out on a histogram or a selected group of his-
tograms. Sometimes the user simply wants to select a region visually using a cursor,
but other times precise limits of the region to observe have to be entered numerically.
The displayer should be flexible enough to allow users to switch between modes easily.
The following sections describe the functionalities of SpecTk where some of the redun-
dancy just mentioned has been implemented.

1. Main display
The main display of the SpecTk application is shown on figure 5, where some of the

features presented have been labeled with circled numbers. It should be noted that the
overall color design of the application has been intentionally left in shades of gray to
emphasize the data contained in the histogram, rather than drawing attention to the
displayer itself. A detailed description of the features labeled by circled numbers follow.

(1) One cannot overstate the usefulness of tabbed pages widgets such as the tab-
notebook provided in the BLT package. The convenience and real estate economy it
provides on the screen is perfectly adapted to the display of pages of histograms. Not
only can the user quickly switch between pages, but each page can also be detached as a
separate window by clicking on the dashed line underneath the label. The configura-
tion of each page is set and modified in one of the drawer panels (see section IV.2.a).

(2) Actions performed by the program can be applied to various combinations of
displays. Selecting can be done in different modes, and the selected displays appear
sunken and with a darker shade of gray. Note that any combination of histogram can
be selected by pressing the Shift key while selecting.

(3) This cluster of buttons provides one of the means to inspect details of the dis-
played histograms. The bottom row respectively shrinks, sets to full scale or expands
the viewed range of the selected histograms around the last previously expanded view.
This is useful when quickly
checking on the full histo-
gram before returning to a
specific region for instance.
The middle row sets the fre-
quency scale to either more
of less number of counts, or
back to Auto mode where
the scale is automatically
adjusted from the maximum
number of counts. Finally,
the top row allows users to
switch between a linear or
logarithmic scale for the fre-
quency axis (the display on
the right shows the same
data as on the left, but with a
logarithmic scale).

(4) The histogram title
identifies the display and
shows the gating condition if
one has been applied. This
last piece of information is
crucial because the user
needs to know if any filter-
ing conditions the histogram
before an interpretation of
the data can be sanely per-
formed.

(5) The axis label show the parameter and its units. If more than one histogram is
plotted on a given display, only the unit is shown. Only histograms of parameters us-
ing the same unit can be plotted simultaneously on a display, regardless of their number
of bins.

Figure 5: main display of SpecTk. See text for details. The
circled labels point to the following features:
(1) page tabs
(2) selection mode in the page
(3) zooming and scale mode buttons
(4) histogram title and gating display
(5) parameter and units display
(6) legend if more than one histogram is displayed
(7) expand/shrink button
(8) region-of-interest (ROI) or gate display
(9) statistics button
(10) example of statistics display
(11) toolbar
(12) status display

1

11

3

12

9
8

6
10

4
7

2

5

(6) When more than one histogram is plotted on a display (this feature is only avail-
able for one-dimensional histograms so far), a legend is added to identify the traces.
The gating condition of the individual histograms is shown in that legend.

(7) Each display of a page can be expanded to the full size of the page, and shrunk
back to its original size using this little button on the top right corner. This feature is
particularly easy to implement using the grid manager of Tcl∕Tk.

(8) Any region-of-interest (ROI) or gate defined on a particular parameter shows
automatically on the histograms of that parameter. ROIs are displayed with dashed
lines, whereas gates are shown with solid lines. Notice the same example ROI shows on
both displays of the same histogram.

(9) This button labeled with a Sigma (∑) sign opens or closes a small window
showing the results of statistical calculations.

(10) Example of statistical calculations. For each subset of data defined by any ROI
or gate, as well as the whole data set in the histogram, the program calculates the
summed number of counts, its ratio relative to the total, the average value of the pa-
rameter, and the root-mean-square deviation of the distribution. Those calculations are
rendered extremely fast and easy to implement thanks to the vector objects provided in
the BLT package and their associated set of mathematical operations.

(11) Toolbar. From top to bottom, the available tools are the following:

 Selection tool used to select histograms on which to perform actions. Various
selection mode are available as already discussed in (2).

 Clicking on a display panel after selecting this tool opens a menu used to as-
sign a particular histogram to the display. The way this menu is built depends on the
choice of divider characters for the histogram names, as explained later in the Spectrum
drawer tab section (section VI.2.b). Shift clicking allows the user to append histograms
to a display. Only histograms based on parameters with the same unit as the ones al-
ready displayed are included in the menu. Shift right click is used to remove traces
from the display, while right click aborts any of the previous operations. Note that
while only this tool can be used to append or remove traces, the assignment of only one
histogram to a display is easier done using the tree of the Spectrum drawer tab.

 This tool provides the visual method of inspecting details of histograms. A
cross hair appears on the displays and is used to enter the limits of the viewed region.
The first limit entered can be cancelled by using right click, and the full scale of the his-
togram can be restored using double click.

 The frequency scale of histograms can be visually set using this tool. For one-
dimensional histogram, this sets the vertical scale, whereas for two-dimensional histo-
grams the color scale is changed. Double click sets the frequency scale back to auto-
matic scaling.

 This is yet another way of inspecting the data contained in histograms, but
this time by scrolling a fixed range along the horizontal scale for one-dimensional histo-
grams, and both horizontal and vertical scales for two-dimensional histograms.

 The inspect tool simply displays the contents of the histograms bin by bin,
while the cursor jumps accordingly.

 The edit tool allows users to modify existing ROIs and gates displayed on top
of histograms. For one-dimensional ROIs and gates, also called Slices, individual limits
can be modified, but also both at the same time by holding the Shift key while dragging.
 For two-dimensional ROIs and gates, also called Contours, the whole polygon can be
dragged when clicked inside, and individual points can also be relocated. This tool is a
huge time-saver because ROIs and gates almost always need to be relocated as experi-
mental conditions change. Whenever a gate is modified, the SpecTcl server is notified
and updates the gate definition, which in turn dispatches it to all its displayer clients.
This feedback mechanism ensures that all displayer clients reflect the current state of the
gates used in the server. Also, statistical calculations are automatically updated when-
ever a ROI or gate is being modified.

(12) The status bar indicates whether SpecTk is connected to a server, and in case
it is, which server on which port. If the server quits, SpecTk disconnects and notifies the
user.

Other features of the main window include the menu bar, which contains the
necessary commands for connecting and disconnecting from the server, saving or re-
storing SpecTk configuration files (the current configuration is indicated in the main
window title bar), and some useful options such as the font type and size. The clearing
and updating buttons are self-explanatory. The bottom right buttons operate on the
drawer explained in more detail below.

2. Drawer tabs
The choice of a drawer for implementing the high level functionalities of the appli-

cation was no doubt influenced by the Macintosh™ experience of the author. Drawers
have the advantage of visually separating the functions it implements from the main
window, while retaining the convenience of an easy access as compared to menus for
instance. The drawer manipulation in SpecTk is operated by the Tcl∕Tk grid manager.

Although it fulfills the required effect, one could consider
implementing a more sophisticated drawer widget in fu-
ture versions of Tcl∕Tk. Because all functionalities cannot
not possibly fit in the limited real estate of a drawer, once
again the use of a tabbed notebook widget offered the
most convenient solution. So far six tabbed drawer pages
implement the following functions in a vertical arrange-
ment.

a) Page definition (figure 6). The geometry - number of
rows and columns - of display pages is easily managed in
this drawer tab. Pages can be either created, modified or
deleted, and their label edited. Note that page modifica-
tion keeps the assignment of display panels untouched,
thus users can easily add new displays to existing pages
without having to re-assign all panels.

b) Spectrum or histogram assignment (figure 7). This
drawer tab provides an alternative way of assigning his-
tograms to display panels than the menu-driven tool pre-
sented in the previous section. It uses the treeview wid-
get provided in the BLT package to order the histograms
according to their names. The branches of the tree are de-
termined by a set of divider characters chosen by the user.
Therefore, by adopting a naming scheme for the histo-
grams and choosing the appropriate divider characters,
the histograms can be ordered in a well structured tree.
The example shown uses a dot (.) as divider character,
while the histogram names are segmented using the same
character. The resulting tree shows all the branches sepa-
rated from the divider character, as well as the type of
histogram or a colorful symbol () for an internal name
node. More than one divider character(s) can be used, and
the menu used by the assignment tool () is built on the
same tree. The top part of the drawer shows information
relevant to the highlighted histogram as the mouse hovers
across the tree or the tree selection otherwise. The two
buttons on the bottom can be used to assign the histogram
to the selected display panel, the one marked “Select-
ed++” automatically selects the following panel after the

Figure 6: Page drawer tab.

Figure 7: Spectrum drawer
tab.

current assignment has been made. Alternatively, double clicking on the tree performs
the same task. Using a tree structure increases the user
efficiency tremendously when large numbers of histo-
grams need to be handled, as often the case with multiple
element detector systems nowadays used in nuclear and
particle physics.

c) The next drawer tab (see figure 8) is basically an in-
terface to the various graph element display options pro-
vided by the BLT package. They offer the possibility to
change the representation of the histogram data using
symbols, different types of lines between points, error bars
and grids. An example corresponding to the setting
shown is appended to the figure. The error bars are cal-
culated from a normal statistical distribution, as the
square root of the number of counts in each individual
bin.

d) The last of the redundant ways of specifying limits
for the viewed region of a histogram is implemented in
the axis drawer tab (see figure 9). Here the user can type
numerical values for the limits and apply them to selected
histograms or to a whole page. Alternatively, existing
limits of a single histogram can be loaded and propagated
to others. This is particularly useful when comparing a
set of histograms based on same or similar parameters

Figure 8: graph drawer tab and example of trace using symbols and error bars.

Figure 9: Axis drawer tab.

displayed in the same page. Both minimum and maxi-
mum limits of the frequency (or data) scale can also be
manually adjusted, a feature often used in two-
dimensional histograms to eliminate low-count back-
ground.

e) The region-of-interest (ROI) drawer tab manipulates
filtering objects such as Slices and Contours (Bands are not
supported at this point). The ROI category is internal to
SpecTk, whereas the gate category is also used by SpecTcl
to filter events. The choice of the gate category therefore
triggers communication with the server, whenever a gate
is defined, deleted or modified. The creation buttons initi-
ate a modal sequence on the selected histogram, in which
the user can either click directly on the display to enter the
limits or use an entry box to type in a numerical value. At
any stage of the entry sequence, the user can go back-
wards using the right mouse button. For two-dimensional
histogram, the last point of a Contour polygon is entered
with double click. After the entry sequence is complete,
the program asks to either cancel or validate the entry with the name typed in the name
entry box. Note that even though filtering objects are entered on histogram displays,
they are actually bound to the parameter rather than the histogram itself. Other histo-
grams based on the same parameter will automatically display the newly defined ob-
ject. This feature is essential when comparing two histograms based on the same pa-
rameter but with different filtering conditions for instance. The ROI drawer tab also
displays the statistical calculations performed on various histograms in a text Tcl wid-
get. Since this widget support cut-and-paste operations, the user can easily export the
results to other applications.

f) The last drawer tab implemented in this first version of SpecTk implements the
data fitting functionality (see figure 11). The operation of fitting a data set with a given
mathematical function is among the last steps in obtaining a measured “observable”
from an experiment. The quality of the fit indicates how well the model represented by
the function matches the data. SpecTk uses the classical least square fitting method, in
which the quality of the fit is indicated by the value of the normalized Χ2. A value of 1
indicates the best agreement between the fit and the data. For speed purposes, the fit-
ting engine and functions are implemented in C++ rather than as a Tcl script. The num-
ber of fitting function is so far limited to four: Gaussian, Lorentzian, Exponential and
Polynomial. Each has a linear function added to it, essential when fitting data sitting on

Figure 10: ROI drawer tab.

top of background. A formula for each function shows the
definition of the parameters. The fitting region is defined
by any ROI or gate Slice. The example shown in the figure

is a Gaussian fit to the displayed data in the region defined by the ROI named “cut”.
Some of the fit parameters can be frozen
to a chosen value by clicking on the check
button next to them. The results from the
fit appear in a text widget similar to the
ROI results box, and the fitted function is
displayed in red on top of the data in the
histogram display. A small box contain-
ing the fit results can also appear on the
display and be relocated to a convenient
place.

3. Printing and fonts
Printing is usually a rather involved

task for a programmer, if something bet-
ter than a screenshot is to be provided.
Not so with Tcl∕Tk and the BLT library:
the graph widget provides the necessary
command to generate PostScript™ code
for each of the display panels. The
SpecTk printing dialog called from the

Figure 11: Fit drawer tab and example of a Gaussian fit.

Figure 12: SpecTk print dialog. The user can
choose to print a whole page of histograms or a
single display. The size of the print can be
easily adjusted. The printer name is specified
in a standard Unix print command (not avail-
able under Windows™). A preview is provided
and the resulting picture can be saved as a
PostScript™ file. The fonts used in the final
printout depend on the X Window installation.

“File” menu offers different
options as shown on figure
12. The font rendering de-
pends on the X Window in-
stallation of the machine
running the program. The
font dialog called from the
“Options” menu allows the
user to customize the vari-
ous fonts in the program.
Some trial and error is often
necessary before the printed
result is satisfactory due to
variations in font imple-
mentation in printers as
well. Figure 13 shows an
example of a page printout
saved as a PostScript™ file.

V. Future improvements
From a science usability point of view, improvements to such an application lie

mostly in the realm of histogram manipulation. Once histograms have been accumu-
lated in the data analysis SpecTcl program, with all necessary calculations and filtering
conditions set up, they often need to be combined or manipulated before physical in-
formation can be extracted from them. A non-exhaustive list of often desired operations
follows.

• Binning: the optimum binning of histogram data is obtained when the width of the
bins is roughly an order of magnitude smaller than the features observed in the histo-
gram. This way the maximum statistics in the bins is attained without compromising
the significance of the data.

• Addition and subtraction: good examples are when histogram from many similar de-
vices are added together to gain statistics, or background measurements need to be
subtracted from the data. The problem of equal binning between the histograms be-
fore such operations are possible can be addressed with the previous binning opera-
tion.

• Multiplication by a constant: the frequency scale of histograms is invariably converted
into physically meaningful unit such as a cross section for instance in case of nuclear
and particle physics.

Figure 13: example of a page printout.

ro
i2

ro
i2 tof.xfp_obf

ROI Sum Ratio <X> RMS
All 25097 100 45.713 109.28
roi1 24633 98.151 41.475 22.556
roi2 24613 98.071 41.468 22.445

tof.xfp_obf (True)

s800.tof.xfp_obj (channels)

20 40 60 80

C
o

u
n

ts

0
5

0
0

1
0

0
0

tcrdc1.anode%tcrdc1.tac (True)

s800.im.track.tcrdc1.anode (channels)

400 600 800

s
8

0
0

.i
m

.t
ra

c
k
.t

c
rd

c
1

.t
a

c
 (

c
h

a
n

n
e

ls
)

5
0

0
6

0
0

7
0

0
8

0
0

1

10

20

30

40

roi4

tcrdc2.xg%tcrdc2.tac
ROI Sum Ratio <X> <Y> XRMS YRMS
All 24633 100 28.791 887.57 18.84 1134
roi4 19535 79.304 30.923 1026.9 2.2444 421.23

tcrdc2.xg%tcrdc2.tac (roi1)

s800.im.track.tcrdc2.calc.x_gravity (pad)

25 30 35 40

s
8

0
0

.i
m

.t
ra

c
k
.t

c
rd

c
2

.t
a

c
 (

c
h

a
n

n
e

ls
)

5
0

0
1

0
0

0
1

5
0

0
2

0
0

0

1

5

10

15

20

25

ro
i3

ro
i3

gaussian fit
Chi2=2.3012
y0=0 ± 0
a=0 ± 0
A=356.59 ± 3.2494
x0=1021.2 ± 1.333
sig=178.44 ± 1.5157
area=19470 Counts

tcrdc2.tac (roi1)

s800.im.track.tcrdc2.tac (channels)

500 1000 1500 2000

C
o

u
n

ts

0
1

0
0

2
0

0
3

0
0

4
0

0

• Custom fitting: the mathematical functions used in physical science and nuclear
physics in particular are often more complex than the simple four functions provided
in SpecTk. The ideal tool would be to interactively enter a mathematical function as a
Tcl script, which would then be used for the fit. Although in principle possible, this
goal requires some thought in particular on how to manage the fit parameters be-
tween the Tcl and C++ worlds.

Other foreseen improvements include the possibility to save and restore histograms
in various formats directly from SpecTk, and the addition of other two-dimensional
histogram representations such as scatter plot.

The best future improvements are usually those requested by people who actually
use the program, and see first-hand its shortcomings and what changes or additions
would make it better. Since the user base of SpecTk is still rather limited so far, this
kind of feedback hasn’t happened very much yet, but is expected to grow in the near
future.

VI.Conclusion
Originally developed on a Macintosh™ platform running the Unix-based OS X™

system, the program SpecTk has been successfully ported to Linux and Windows™
thanks to Tcl∕Tk portability. This new displayer for the NSCL SpecTcl data analysis
program is in its early phase of validation. A beta distribution is available at
http://www.nscl.msu.edu/~bazin/SpecTk, where installation instructions are found in
the install.htm file, as well as tar balls for the various supported platforms. It is worth
mentioning again that this project wouldn’t have even been started without the exis-
tence of the BLT package. From the knowledge of the author, this package is unique in
its kind among the numerous expansions of the Tcl∕Tk language, and is invaluable for
all science-based applications using Tcl.

