Useful definitions and Formulas
NOTE: This set of equations is not necessarily complete, but it can serve as a basis for your own equation sheets.
$\sin \theta=$ opposite/hypotenuse; $\quad \cos \theta=$ adjacent/hypotenuse; $\tan \theta=$ opposite/adjacent
Phytagorean theorem: $c^{2}=a^{2}+b^{2}$
Solution for t to a quadratic equation $\mathrm{at}^{2}+\mathrm{bt}+\mathrm{c}=0 \quad t_{ \pm}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Average velocity $\mathrm{v}_{\text {average }}=\Delta \mathrm{x} / \Delta \mathrm{t}$;
Average acceleration $\mathrm{a}_{\text {average }}=\Delta \mathrm{v} / \Delta \mathrm{t} ; \quad$ Instantaneous acceleration: $\mathrm{a}=\lim _{\Delta \mathrm{t} \rightarrow 0}(\Delta \mathrm{v} / \Delta \mathrm{t})$
Displacement x as a function of time t with constant acceleration a: $x(t)=x(0)+v(0) t+1 / 2 a t^{2}$
Velocity v as a function of time t with constant acceleration a: $\mathrm{v}(\mathrm{t})=\mathrm{v}(0)+\mathrm{at}$
Gravitational acceleration on earth surface: $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$
Horizontal component of velocity of an object moving at velocity v , at an angle θ with the horizontal:
$\mathrm{v}_{\mathrm{x}}=\mathrm{v} \cos \theta$
Vertical component of velocity of an object moving at velocity v , at an angle θ with the horizontal: $\mathrm{v}_{\mathrm{y}}=\mathrm{v} \sin \theta$

Newton's first law: if $\Sigma \mathrm{F}=0$ the object continues in the original state of motion
Newton's second law: $\Sigma \mathrm{F}=\mathrm{ma}$
Newton's third law: $\mathrm{F}_{1 \rightarrow 2}=-\mathrm{F}_{2 \rightarrow 1}$
Newton's law of universal gravitation: $\mathrm{F}_{\mathrm{g}}=\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2} \quad \mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
Weight: $\mathrm{w}=\mathrm{mg}$; Gravitational constant of planet with mass M and radius $\mathrm{r}: \mathrm{g}=\mathrm{GM} / \mathrm{r}^{2}$
Normal force n : elastic force acting perpendicular to the supporting surface
Force of static friction: $\mathrm{F}_{\mathrm{static}} \leq \mu_{\mathrm{s}} \mathrm{n} ; \quad \quad \mu_{\mathrm{s}}$: coefficient of static friction
Force of kinetic friction: $\mathrm{F}_{\text {kinetic }}=\mu_{\mathrm{k}} \mathrm{n} ; \quad \quad \mu_{\mathrm{k}}$: coefficient of kinetic friction
Work $\mathrm{W}=\mathrm{F} \cos \theta \Delta \mathrm{x}$
Kinetic energy $\mathrm{KE}=1 / 2 \mathrm{mv}^{2}$
Gravitational potential energy $\mathrm{PE}=\mathrm{mgy}$; \quad Elastic potential energy $\mathrm{PE}=1 / 2 \mathrm{kx}^{2}$
Principle of conservation of mechanical energy $\mathrm{KE}_{i}+\mathrm{PE}_{\mathrm{i}}=\mathrm{KE}_{f}+\mathrm{PE}_{\mathrm{f}}$
Work done by non conservative forces $\mathrm{W}_{\mathrm{nc}}=\left(\mathrm{KE}_{\mathrm{i}}+\mathrm{PE}_{\mathrm{i}}\right)-\left(\mathrm{KE}_{\mathrm{f}}+\mathrm{PE}_{\mathrm{f}}\right)$
Average Power $\mathrm{P}=\mathrm{W} / \Delta \mathrm{t}$;
Average Power for a constant force $\mathrm{P}=\mathrm{Fv}$
Linear momentum $\mathrm{p}=\mathrm{mv}$
Impulse $=\mathrm{F} \Delta \mathrm{t}$
Impulse-momentum theorem $\mathrm{F} \Delta \mathrm{t}=\Delta \mathrm{p}$
Conservation of momentum (no net external force)
Conservation of kinetic energy (in elastic collisions only)

$$
\begin{aligned}
& m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{l f}+m_{2} v_{2 f} \\
& 1 / 2 m_{1} v_{1 i}{ }^{2}+1 / 2 m_{2} v_{2 i}{ }^{2}=1 / 2 m_{1} v_{1 f}^{2}+1 / 2 m_{2} v_{2 f}^{2}
\end{aligned}
$$

Average angular speed $\omega=\Delta \theta / \Delta \mathrm{t} ; \quad$ Average angular acceleration $\alpha=\Delta \omega / \Delta \mathrm{t}$
Displacement θ as a function of time t with constant acceleration α : $\theta(t)=\theta(0)+\omega(0) t+1 / 2 \alpha t^{2}$
Angular speed as a function of time t with constant acceleration $\alpha: \omega(t)=\omega(0)+\alpha t$
Relations between tangential (linear) and angular speed and acceleration: $v_{t}=\omega r$ and $a_{t}=\alpha r$
Centripetal acceleration $a_{c}=v_{t}^{2} / r$
Kepler's third law $T^{2}=\left(4 \pi^{2} / \mathrm{GM}_{\mathrm{s}}\right) \mathrm{r}^{3}$
Angular momentum: for point-like object $L=m r^{2} \omega=m r v$; for rigid body: $L \equiv I \omega$;
Rotational K.E. of a rigid body $=1 / 2 I \omega^{2}$
Conservation of Total Mechanical Energy: $E=1 / 2 I \omega^{2}+1 / 2 m v^{2}+m g h$ (if there is no friction)
Angular momentum of a system is conserved (provided there is no net torque on the system).
Angular acceleration due to a net Torque: $\Sigma \tau=I \alpha$
Moments of inertia I: Cylindrical shell: $I=M R^{2}$; Solid Cylinder: $I=1 / 2 M R^{2}$
Solid Sphere: $I=2 / 5 M R^{2} \quad ; \quad$ Thin spherical shell: $I=2 / 3 M R^{2}$
Thin Rod with axis through center: $I=1 / 12 M L^{2}$
Thin rod with axis through end: $1 / 3 M L^{2}$

Density: $\rho=M / V$ (mass / volume) ; Pressure : $P=F / A$ (force / area)
Specific Gravity $=\rho / \rho_{\text {water }}$, with $\rho_{\text {water }}=1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Young's modulus : $Y=\frac{F}{A} \frac{L}{\Delta L}$
Pressure vs. Depth in Fluids:

$$
\begin{array}{ll}
P=P_{0}+\rho g h & \left(\mathrm{P}_{0}:\right. \text { pressure at surface) } \\
P_{1}+\rho g h_{1}=P_{2}+\rho g h_{2} & \text { (comparing two depths) }
\end{array}
$$

Buoyancy and Archimedes' principle:
$B=\rho_{f} g V=M_{f} g \quad(f$ denotes the displaced fluid $)$
Fluid (nonviscous, incompressible) Flow: $A v=$ constant (constant flow rate)
Bernoulli's Equation $\quad P+1 / 2 \rho v^{2}+\rho g h=$ constant
Poiseuille's Law for viscous fluid: \quad Rate of flow $=\frac{\Delta V}{\Delta t}=\frac{\pi R^{4}\left(P_{1}-P_{2}\right)}{8 \eta L}$
Temperature conversions: $\quad \mathrm{T}_{\mathrm{C}}=\mathrm{T}_{\mathrm{K}}-273.15^{\circ} \quad \mathrm{T}_{\mathrm{F}}=1.8 \mathrm{~T}_{\mathrm{C}}+32^{\circ}$
Thermal expansion: $\Delta \mathrm{L}=\alpha \mathrm{L}_{0} \Delta \mathrm{~T} ; \quad \Delta \mathrm{A}=\gamma \mathrm{A}_{0} \Delta \mathrm{~T} ; \quad \Delta \mathrm{V}=\beta \mathrm{V}_{0} \Delta \mathrm{~T}$
$(\gamma \cong 2 \alpha) \quad(\beta \cong 3 \alpha)$
The Ideal Gas Law: $\quad P V=n R T=N k_{B} T ; \quad \mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}{ }^{\circ} \mathrm{K}$
Avogadro's Number: $\quad N_{A}=6.02 \times 10^{23}$ molecules $/ \mathrm{mol}$.
Kinetic theory of gas : $\quad\left(1 / 2 m v^{2}\right)_{\text {average }}=(3 / 2)\left(R / N_{A}\right) T$
Root-mean-square speed of molecule (mass m; molar mass M) in ideal gas: $v_{r m s}=\sqrt{\frac{3 k_{B} T}{m}}=\sqrt{\frac{3 R T}{M}}$

Heat capacity c: $\quad Q=m c \Delta T \quad 1$ calorie $=4.186 \mathrm{~J}$
Specific heat of ice: $2090 \mathrm{~J} / \mathrm{kg}^{0} \mathrm{C}\left(0.5 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}\right)$; \quad Specific heat of water: $4186 \mathrm{~J} / \mathrm{kg}^{0} \mathrm{C}\left(1 \mathrm{cal} / \mathrm{g}^{\mathrm{o}} \mathrm{C}\right)$
Specific heat of steam: $2010 \mathrm{~J} / \mathrm{kg}^{0} \mathrm{C}\left(0.48 \mathrm{cal} / \mathrm{g}^{\mathrm{o}} \mathrm{C}\right)$
Latent heat $L: \quad Q=m L$
Latent heat of fusion for water: $3.33 \times 10^{5} \mathrm{~J} / \mathrm{kg}(79.7 \mathrm{cal} / \mathrm{g})$
Latent heat of vaporization for water: $2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}\left(54 Q \mathrm{~g}^{\mathrm{al} / \mathrm{g})}\right.$
Heat conductivity $k: \quad$ rate of heat transfer $=P=\frac{\Delta T}{\Delta t}=k A\left(\frac{\Delta T}{\Delta x}\right)$

Through a compound slab: $P=\frac{A \Delta T}{\sum_{i}\left(L_{i} / k_{i}\right)}$
Power of radiation energy (Stefan's Law): $\mathrm{P}=\sigma A \mathrm{~T}^{4}$
Rate of radiation energy transfer: $\mathrm{P}=\sigma \mathrm{Ae}\left(\mathrm{T}^{4}-\mathrm{T}_{0}{ }^{4}\right)$
Wien's Displacement Law: $\lambda_{\max } \mathrm{T}=0.2898 \times 10^{-2} \mathrm{mK}$
Work done on a gas at constant pressure $\mathrm{W}_{\text {on gas }}=-\mathrm{P} \Delta \mathrm{V}$;

$$
\Delta \mathrm{V}=\mathrm{V}_{\text {final }}-\mathrm{V}_{\text {initial }}
$$

(Note: work done by the gas is $\mathrm{W}_{\text {by gas }}=\mathrm{P} \Delta \mathrm{V}$)
First law of thermodynamics: $\Delta \mathrm{U}=\mathrm{Q}-\mathrm{P} \Delta \mathrm{V}$
(true for both definition of work)
Work done by a Heat engine $\mathrm{W}_{\text {eng }}=\left|\mathrm{Q}_{\text {hot }}\right|-\left|\mathrm{Q}_{\text {cold }}\right|$
Thermal efficiency $\varepsilon=W_{\text {eng }} / \mathrm{Q}_{\text {hot }}=1-\left|\mathrm{Q}_{\text {cold }} /\left|\mathrm{Q}_{\text {hot }}\right|\right.$
Thermal efficiency for an ideal engine (the Carnot cycle): $\varepsilon=1-\mathrm{T}_{\text {cold }} / \mathrm{T}_{\text {hot }}$
Change in Entropy in a reversible process involving heat transfer of $\mathrm{Q}: \Delta \mathrm{S}=\mathrm{Q}_{\mathrm{I}} / \mathrm{T}$
Elastic force (Hooke'e Law): F = -kx
Acceleration in the Simple Harmonic Oscillator (S.H.O.) $a=-(k / m) x$
Elasctic potential energy $\mathrm{PE}=1 / 2 \mathrm{kx}^{2}$
Velocity in a simple harmonic oscillator $v=\sqrt{\frac{k}{m}\left(A^{2}-x^{2}\right)}$
Position, velocity and acceleration of a S.H.O (if x is at a maximum at $t=0$):

$$
x(t)=A \cos (\omega t) ; \quad v(t)=-\omega A \sin (\omega t) ; \quad a(t)=-\omega^{2} A \cos (\omega t)
$$

Period and angular frequency of a simple harmonic oscillator $T=2 \pi \sqrt{\frac{m}{k}}$ and $\omega=2 \pi f=\sqrt{\frac{k}{m}}$
Total energy of a S.H.O.: $E=1 / 2 \mathrm{kx}^{2}+1 / 2 \mathrm{mv}^{2}=1 / 2 \mathrm{kA}^{2}=1 / 2 \mathrm{mv}_{\max }{ }^{2}$
Period a simple pendulum $T=2 \pi \sqrt{\frac{L}{g}}$
Relation between the speed, the wavelength, and the frequency of a wave: $v=\lambda f$
Speed of a wave on a stretched string $v=\sqrt{\frac{F}{\mu}}$

Speed of sound wave in a medium $v=\sqrt{\frac{B}{\rho}}$
Speed of sound as a function of temperature: $v_{\text {sound }}=331 \sqrt{ }(T / 273)$
Intensity of wave propagation: $I=$ Energy transfer per unit area per unit time = Average Power / Area
Intensity of sound in decibel $\beta=10 \log \left(\mathrm{I} / \mathrm{I}_{0}\right) \quad$ where $\mathrm{I}_{0}=1.0 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$
Intensity of a spherical wave $\mathrm{I}=\mathrm{P}_{\mathrm{av}} /\left(4 \pi \mathrm{r}^{2}\right)$
Doppler effect $f^{\prime}=f \frac{v+v_{O}}{v-v_{S}}$
Standing waves on a stretched string $f=n \frac{v}{2 L}$
Standing waves in a tube of air open in both sides $f=n \frac{v}{2 L}$ with $\mathrm{n}=1,2,3, \ldots$
Standing waves in a tube of air closed in one side and open in the other $f=n \frac{v}{4 L}$ with $\mathrm{n}=1,3,5, \ldots$

