Useful definitions and Formulas

NOTE: This set of equations is not necessarily complete, but it can serve as a basis for your own equation sheets.

 $\sin\theta = \text{opposite/hypotenuse};$ $\cos\theta$ =adjacent/hypotenuse; tanθ=opposite/adjacent Phytagorean theorem: $c^2=a^2+b^2$ $t_{\pm} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Solution for t to a quadratic equation $at^2+bt+c=0$ Average velocity $v_{average}=\Delta x/\Delta t$; Instantaneous acceleration: $a=\lim_{\Delta t\to 0}(\Delta v/\Delta t)$ Average acceleration $a_{average} = \Delta v / \Delta t$; Displacement x as a function of time t with constant acceleration a: $x(t)=x(0)+v(0)t+\frac{1}{2}at^{2}$ Velocity v as a function of time t with constant acceleration a: v(t)=v(0)+atGravitational acceleration on earth surface: g=9.81 m/s² Horizontal component of velocity of an object moving at velocity v, at an angle θ with the horizontal: $v_x = v \cos \theta$ Vertical component of velocity of an object moving at velocity v, at an angle θ with the horizontal: $v_v = v \sin \theta$ Newton's first law: if $\Sigma F=0$ the object continues in the original state of motion Newton's second law: $\Sigma F=ma$ Newton's third law: $F_{1\rightarrow 2} = -F_{2\rightarrow 1}$ Newton's law of universal gravitation: $F_g = Gm_1m_2/r^2$ $G=6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$ Gravitational constant of planet with mass M and radius r: $g=GM/r^2$ Weight: w=mg; Normal force n: elastic force acting perpendicular to the supporting surface Force of static friction: $F_{\text{static}} \leq \mu_s n$; μ_s : coefficient of static friction Force of kinetic friction: $F_{kinetic} = \mu_k n$; μ_k : coefficient of kinetic friction Work W=Fcos $\theta \Delta x$ Kinetic energy KE= $1/2 \text{ mv}^2$ Elastic potential energy $PE=1/2 \text{ kx}^2$ Gravitational potential energy PE=mgy; Principle of conservation of mechanical energy $KE_i + PE_i = KE_f + PE_f$ Work done by non conservative forces $W_{nc} = (KE_i + PE_i) - (KE_f + PE_f)$ Average Power $P=W/\Delta t$; Average Power for a constant force P=Fv Linear momentum p=mv Impulse = $F \Delta t$ Impulse-momentum theorem F $\Delta t = \Delta p$ Conservation of momentum (no net external force) Conservation of kinetic energy (in elastic collisions only)

Average angular speed $\omega = \Delta \theta / \Delta t$; Average angular acceleration $\alpha = \Delta \omega / \Delta t$ Displacement θ as a function of time t with constant acceleration α : $\theta(t) = \theta(0) + \omega(0)t + \frac{1}{2}\alpha t^2$ Angular speed as a function of time t with constant acceleration α : $\omega(t) = \omega(0) + \alpha t$ Relations between tangential (linear) and angular speed and acceleration: $v_t = \omega r$ and $a_t = \alpha r$ Centripetal acceleration $a_c = v_t^2/r$ Kepler's third law $T^2 = (4\pi^2/GM_s) r^3$

Angular momentum: for point-like object $L = mr^2 \omega = mrv$; for rigid body: $L = I \omega$: Rotational K.E. of a rigid body = $\frac{1}{2} I \omega^2$ Conservation of Total Mechanical Energy: $E = \frac{1}{2} I \omega^2 + \frac{1}{2} m v^2 + mgh$ (if there is no friction) Angular momentum of a system is conserved (provided there is no net torque on the system). Angular acceleration due to a net Torque: $\Sigma \tau = I \alpha$ Solid Cylinder: $I = \frac{1}{2}MR^2$ Cylindrical shell: $I=MR^2$ Moments of inertia I: Solid Sphere: $I=2/5MR^2$; Thin spherical shell: $I=2/3MR^2$ Thin Rod with axis through center: $I=1/12ML^2$ Thin rod with axis through end: $1/3ML^2$ Density: $\rho = M / V$ (mass / volume); Pressure : P = F / A (force / area) Specific Gravity= ρ/ρ_{water} , with $\rho_{water}=1.0x10^3$ kg/m³ Young's modulus : $Y = \frac{F}{L}$ Pressure vs. Depth in Fluids: $P = P_0 + \rho g h$ $(P_0: pressure at surface)$ $P_1 + \rho g h_1 = P_2 + \rho g h_2$ (comparing two depths) Buoyancy and Archimedes' principle: (*f* denotes the displaced fluid) $B = \rho_f g V = M_f g$ Fluid (nonviscous, incompressible) Flow: A v = constant(constant flow rate) Bernoulli's Equation $P + \frac{1}{2}\rho v^2 + \rho g h = constant$ Rate of flow = $\frac{\Delta V}{\Delta t} = \frac{\pi R^4 (P_1 - P_2)}{8 n L}$ Poiseuille's Law for viscous fluid: Temperature conversions: $T_C = T_K - 273.15^\circ$ $T_F = 1.8 T_C + 32^\circ$ Thermal expansion: $\Delta L = \alpha L_0 \Delta T$; $\Delta A = \gamma A_0 \Delta T$; $\Delta V = \beta V_0 \Delta T$ ($\beta \cong 3\alpha$) $(\gamma \cong 2\alpha)$ The Ideal Gas Law: $PV = n R T = Nk_BT$; R=8.31 J / mol °K Avogadro's Number: $N_A = 6.02 \times 10^{23}$ molecules/mol. Kinetic theory of gas : $(\frac{1}{2} m v^2)_{average} = (3/2)(R/N_A)T$

Root-mean-square speed of molecule (mass m; molar mass M) in ideal gas: $v_{rms} = \sqrt{\frac{3k_BT}{m}} = \sqrt{\frac{3RT}{M}}$

Heat capacity c: $Q = mc\Delta T$ 1 calorie = 4.186 J Specific heat of ice: 2090 J/kg⁰C (0.5 cal/g^oC); Specific heat of water: 4186 J/kg⁰C (1 cal/g^oC) Specific heat of steam: 2010 J/kg⁰C (0.48 cal/g^oC)

Latent heat *L*: Q = mLLatent heat of fusion for water: 3.33×10^5 J/kg (79.7 cal/g) Latent heat of vaporization for water: 2.26×10^6 J/kg (540 gal/g) Heat conductivity *k* : rate of heat transfer = $P = \frac{\Delta Q}{\Delta t} = kA \left(\frac{\Delta T}{\Delta x}\right)$ Through a compound slab: $P = \frac{A\Delta T}{\sum_{i} (L_i / k_i)}$

Power of radiation energy (Stefan's Law): $P=\sigma AeT^4$ Rate of radiation energy transfer: $P=\sigma Ae(T^4 - T_0^4)$ Wien's Displacement Law: $\lambda_{max}T=0.2898 \times 10^{-2}$ mK

 $\begin{array}{ll} \text{Work done } \underline{\text{on}} \text{ a gas at constant pressure } W_{\text{on gas}} = -P \, \Delta V ; & \Delta V = V_{\text{final}} - V_{\text{initial}} \\ & (\text{Note: work done } \underline{\text{by}} \text{ the gas is } W_{\text{by gas}} = P \, \Delta V) \\ \text{First law of thermodynamics: } \Delta U = Q - P \, \Delta V & (\text{true for both definition of work}) \\ \text{Work done by a Heat engine } W_{\text{eng}} = |Q_{\text{hot}}| - |Q_{\text{cold}}| \\ \text{Thermal efficiency } \epsilon = W_{\text{eng}}/Q_{\text{hot}} = 1 - |Q_{\text{cold}}|/|Q_{\text{hot}}| \\ \text{Thermal efficiency for an ideal engine (the Carnot cycle): } \epsilon = 1 - T_{\text{cold}}/T_{\text{hot}} \\ \text{Change in Entropy in a reversible process involving heat transfer of } Q: \Delta S = Q_r/T \\ \end{array}$

Elastic force (Hooke'e Law): F = -kxAcceleration in the Simple Harmonic Oscillator (S.H.O.) a=-(k/m) x Elasctic potential energy PE=1/2 kx²

Velocity in a simple harmonic oscillator $v = \sqrt{\frac{k}{m}(A^2 - x^2)}$

Position, velocity and acceleration of a S.H.O (if x is at a maximum at t=0): $x(t)=A\cos(\omega t)$; $v(t)=-\omega A\sin(\omega t)$; $a(t)=-\omega^2 A\cos(\omega t)$

Period and angular frequency of a simple harmonic oscillator $T = 2\pi \sqrt{\frac{m}{k}}$ and $\omega = 2\pi f = \sqrt{\frac{k}{m}}$

Total energy of a S.H.O.: $E = \frac{1}{2}kx^2 + \frac{1}{2}mv^2 = \frac{1}{2}kA^2 = \frac{1}{2}mv_{max}$ Period a simple pendulum $T = 2\pi \sqrt{\frac{L}{\sigma}}$

Relation between the speed, the wavelength, and the frequency of a wave: $v=\lambda f$

Speed of a wave on a stretched string $v = \sqrt{\frac{F}{\mu}}$

Speed of sound wave in a medium $v = \sqrt{\frac{B}{\rho}}$

Speed of sound as a function of temperature: $v_{sound}=331\sqrt{(T/273)}$ Intensity of wave propagation: I = Energy transfer per unit area per unit time = Average Power / Area Intensity of sound in decibel $\beta=10 \log (I/I_0)$ where $I_0=1.0 \times 10^{-12} W/m^2$ Intensity of a spherical wave $I=P_{av}/(4\pi r^2)$

Doppler effect $f' = f \frac{v + v_o}{v - v_s}$

Standing waves on a stretched string $f = n \frac{v}{2L}$

Standing waves in a tube of air open in both sides $f = n \frac{v}{2L}$ with n=1,2,3,...

Standing waves in a tube of air closed in one side and open in the other $f = n \frac{v}{4L}$ with n=1,3,5,...