- Announcements:
- HW\#5 is due by 8:00 am tomorrow, Wednesday February 20th. HW\#6 is due next week.
- The third extra credit problem is due tomorrow at 8:00am
- Entropy and the Second Law of Thermodynamics
- Electric and Magnetic Forces

Energy and Entropy - Pendulum Example


MICHIGAN STATE
Why?

- Entropy is a measure of the number of ways a system can be arranged.
- $\mathrm{S}=\mathrm{Heat} / \mathrm{T}$ - thermal energy goes toward increasing the entropy
- Second Law of Thermodynamics - The entropy of a closed system always increases.
- As the pendulum swings useful energy is lost to increasing the random motion of the air and pivot
- If this is true, we can't go back in time. There is no way to recollect the thermal energy and make the pendulum swing higher (that is with a closed system).

Why does the entropy of a system always have to increase?

For now, lets say because that's the way it seems to work. It probably has to do with how the Universe was formed, but that discussion is for later in the term.

A new force - Magnetic force
Certain objects in nature have magnetic poles. They always come in pairs, north and south.

Like poles repel
Unlike poles attract


Near the pole, the strength of the force decreases with the square of the distance.

$$
F \propto 1 / r_{\text {ISP209s8 Lecture } 12}^{2}
$$

What causes the magnetic force?

- Moving charge, current, causes a magnetic field.
- Current is the flow of charge (electrons) in a wire, similar to water flowing in a pipe.
- Large scale current in the Earth is due to the liquid core of the earth and its rotation give the Earth a magntic field. The exact nature is not known.
- The Earth's changing magnetic field:
http://science.nasa.gov/headlines/y2003/29dec_magneticfield.htm

The Earth's magnetic field

Earth's Magnetic Field and the sun


The Changing Earth’s Magnetic Field

http://science.nasa.gov/headlines/y2003/29dec_magneticfield.htm
ISP209s8 Lecture 12

The correspondence of a loop of current and magnet
Magnets have an internal structure where the motion of the electrons creates small regions with currents.


The Earth's Magnetic field - Really


Super computer calculation of field lines

Cyan - in
Gold - out

[^0]
## MICHIGAN STATE

The electric and magnetic forces

- The magnetic force and the electric force are related. They are two manifestations of what we call the electromagnetic force.
- There are four equations that give the relationship. These are Maxwell's Equations.
- Charge creates the electric force
- Moving charge creates the magnetic force
- Maxwell’s equations "unified" the electric and magnetic forces.
- The electric force is what allows us to sit and stand.

Maxwell's Equations - 1864

$$
\begin{array}{ll}
\nabla \cdot \vec{E}=4 \pi \rho & \text { Charge makes an electric field. } \\
\nabla \times \vec{B}=\frac{4 \pi}{c} \vec{J}+\frac{1}{c} \frac{\partial \vec{E}}{\partial t} & \begin{array}{l}
\text { Moving charge makes a } \\
\text { magnetic field. }
\end{array} \\
\nabla \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t} & \begin{array}{l}
\text { Changing magnetic field makes } \\
\text { an electric field }
\end{array} \\
\nabla \cdot \vec{B}=0 & \begin{array}{l}
\text { Magnets always have a north } \\
\text { and a south pole }
\end{array}
\end{array}
$$

The equations predict the existence of an wave that travels with speed c, the speed of light.

UNIVERSITY

## Electric Charge

- Electric charge is a property of matter.
- It is measured in Coulombs
- The charge on one electron is $1.602 \mathrm{E}-19 \mathrm{C}$
- How many electrons in a charge of 1 C ?

$$
\begin{aligned}
& \text { \#Electrons }=\frac{\text { Total Charge }}{\text { Charge } / \text { electron }}=\frac{1 \mathrm{C}}{1.602 \mathrm{E}-19 \mathrm{C} / \text { electron }} \\
& \text { \#Electrons }=6.215 \mathrm{E} 18
\end{aligned}
$$

MICHIGAN STATE
Samples

## Electric and Magnetic Fields

- If we move a test charge, q, (or magnet) in the vicinity of another charge (or magnet) we can make a map of the force.
- Define: Electric field $\mathbf{E}=\mathbf{F} / \mathbf{q}$
- Electric field is a vector. Its units are N/C or V/m (volts/meter). It points in the direction of the force.
- Once we know the electric field we can calculate the force: $\mathrm{F}=\mathrm{qE}$
F = electric field times charge of the object in the field Which is underlying reality, the force or the field?

Example of two point charges

(a)

ISP209s8 Lecture 12

## Magnetic Fields



The SI unit for magnetic field is Tesla, T. At East Lansing the Earth's magnetic field strength is $0.7 \mathrm{E}-4 \mathrm{~T}$.

ISP209s8 Lecture 12
-18-

## MICHIGAN STATE

U N I VERS I T Y
Topographical Maps


MICHIGAN STATE
UN IVERSITY
Map for the Electric Field - Electric Potential


The height is electric potential, V , measured in volts

The slope gives a measure of the electric field.
ISP209s8 Lecture 12
-20-

Another example- 4 charges



ISP209s8 Lecture 12
The Earth's electric field is about 150 N/C (same as V/m)
$\frac{\text { MICHIGAN STATE }}{\text { UN IVERS ITY }}$
The Strength of the Electric Field

- Electric potential - SI unit is the Volt (V)
- Electric field is rate of change of potential

$$
E=-\frac{\Delta V}{\Delta x}
$$

- The minus sign means that electric fields point from + to - charge.


## Sample Problem



What is the magnitude of the electric field at:

- 0.5 m ?
$\cdot 1.5 \mathrm{~m}$ ?
$\cdot 3.0 \mathrm{~m}$ ?

The field is $0 \mathrm{~V} / \mathrm{m}$ at 0.5 m and 3.0 m since the slope is zero.

$$
\mid E(\text { at } 1.5 \mathrm{~m}) \left\lvert\,=\frac{\Delta \mathrm{V}}{\Delta \mathrm{x}}=\frac{(100 \mathrm{~V}-0 \mathrm{~V})}{(2 \mathrm{~m}-1 \mathrm{~m})}=100 \frac{\mathrm{~V}}{\mathrm{~m}}\right.
$$


[^0]:    Gary A. Glatzmaier (UCSC)
    ISP209s8 Lecture 12

