

UNIVERSITY

Today

- Announcements:
 - HW#1 is due Wednesday by 8:00 am
 - The first extra credit assignment is on the LONCAPA system. The due date is 16-Sept.
- Review
- Time Travel
- Units
- Motion
- Scalars, Vectors, Tensors

-1-

-3-

Review

- The speed of light is a constant, independent of the speed of the source.
 - this is one of the two postulates of Special Relativity (Einstein)
 - One of the implications is that moving clocks run slow.
- **Position** location relative to an origin
- Velocity rate of change of position
- Acceleration rate of change of velocity

ISP209f5 Lecture 2

-2-

MICHIGAN STATE

Time Travel

- Moving at high speed is a way to travel into the future. No problem here; this is correct.
- Twin Paradox (stated in class)– resolved by general relativity
- The speed of light is fast, but distances in space are large.
 - We see the Sun as it was 8 minutes ago
 - We see nearby stars as they were 4-10 years ago
 - The distance light travels in one year is called a light-year.
 - We see the nearby Andromeda Galaxy as it was 3 My ago
 - Looking out at the stars is like looking back in time.
- Can we move backward in time? Maybe

MICHIGAN STAT

Units

- Physical quantities always have a unit attached; for example 2 *meters*
- Some quantities are a combination of units; for example 1 liter = 1000 cm³ (LONCAPA 1000 cm³ or 1.0E3 cm³ or 1.0E-3 m³)
- How many liters are in a gallon?
- What is the density of materials: density = mass/volume

prefix

n

μ

m

с

d

k М

G

name nano

micro

milli

centi

deci

kilo

Mega

giga

UNIVERSITY

Unit Conversions

3.7854*l*=1.00 $1.000 = \frac{3.7854}{1.000}$ gallor Let's take an e 16.4 gallons. H 16.4g = 16.4g

Another example of unit conversion

$\frac{4l}{n}$ example. Suppose we have How many liters is that? $al \times \frac{3.7854l}{gal} = 62.1l$	100 cm = m $1.000 = \frac{100 cm}{m}$ $11.2 cm^{2} = 11.2 cm^{2} \times \left(\frac{1.000 m}{100 cm}\right)^{2} = 1.12 \times 10^{-3} m^{2}$
ISP209f5 Lecture 2 -5-	ISP209f5 Lecture 2 -6-
MICHIGAN STATE UNIVERSITY Prefixes	MICHIGAN STATI UNIVERSITY LONCAPA Units
value 10^{-9} 10^{-9} Example: 10^{-3} $2.0My = 2.0 \times 10^6 y$ 10^{-2} $2.0My = \frac{Gy}{1000My} \times 2My = 2 \times 10^{-3}Gy$ 10^{-1} 10^{-3} 10^{-3} 10^{-3} 10^{-1} 10^{-3} 10^{-1} 10^{-3} 10^{-9} 10^{-9}	 We will use the SI system of units. Link Common units Kilogram (mass) kg Meter (length) m Seconds (time) s Newtons (force) N – same as kg*m/s² Joules (energy) J – same as N*m The LONCAPA system has help Frequency is 1/s (Hz)
ISP209f5 Lecture 2 -7-	ISP209f5 Lecture 2 -8-

-13-

Examples of Vectors

- Position 2 miles East of Spartan Stadium
- Velocity 60 mph toward Detroit
- Acceleration 9.8 m/s² down
- Note: velocity and acceleration can have opposite directions. Example: a ball moving upward.

ISP209f5 Lecture 2

ISP209f5 Lecture 2

