

Today

- Announcements:
 - HW#10 is due Wednesday Nov. 23.
 - Extra credit project on Intelligent Design is available it will be due Dec. 2nd at 5:00pm. Please don't wait till the last minute.
- Review of Big Bang

Light

elements form

unified

All Forces

Timeline of the Big Bang

Microwave

image formed

MICHIGAN STATE UNIVERSITY

Carbon made

12-15 Billion Years

MICHIGAN STATE

UNIVERSITY

10⁸⁰

-7-

ISP209f5 Lecture 19

-8-

Escape Velocity

The escape velocity for the Earth is about 11 km/s. See the homework problems for examples. -9-

ISP209f5 Lecture 19

MICHIGAN STATE UNIVERSITY

Large Mass in a small region

What is the escape velocity for an object with the mass of the Sun and a radius of 10 km?

 M_{sun} =1.99E+30 kg G=6.67E-11 Nm²/kg²

$$v = \sqrt{\frac{2GM}{R}} = \sqrt{\frac{2 \cdot 6.67E - 11 \cdot 1.99E31}{10000}} = 5 \times 10^8 \frac{m}{s}$$

This is greater than the speed of light!

ISP209f5 Lecture 19

-10-

-12-

MICHIGAN STATE

UNIVERSITY

Two examples

What is the entropy of a deck of cards that has one pair? Data: there are 1,098,240 to order such a deck.

S = 1.38E-23 J/K ln(1,098,240) = 1.92E-22 J/K

How much is the entropy of a glass of water increased if 1.0 J of heat is added when the water is at 295 K. Assume the temperature rise of the water is small.

S = 1.0 J / 295 K = 3.39E-3 J/K

ISP209f5 Lecture 19

-21-

MICHIGAN STATE

-22-

Coin Tosses

Suppose we have 20 coins: HHHHHHHHHH
S = k ln(1) = 0

· · ·		
Heads	Number of ways	Entropy (J/K) *10 ⁻²³
9	10	3.18
8	45	5.25
7	120	6.61
6	210	7.38
5	252	7.63
4	210	7.38
3	120	6.61
2	45	5.25
1	10	3.18

Partine and Anton

$\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$

Why does time always move in one direction?

- Inflation during the Big Bang resulted in a universe that had a very low entropy. Much too low for its size. It is like the Universe started with all heads.
- Hence, everything in the Universe moves toward reaching the correct amount of entropy.
- Time has a direction because going back in time would imply the entropy could be decreased. That is very improbable.
- The Universe tends toward increasing entropy.
- What is time?