

Today

- Announcements:
 - HW#5 and HW#6 are due tomorrow, October 19th.
- Energy
- The electromagnetic spectrum
- Quantum Mechanics and Atoms

ISP209f5 Lecture 12

-1-

Energy and Power

– Kinetic – energ	gy of motion $KE = \frac{1}{2}mv^2$	
- Potential - ene	ergy of position rel CDE = $m (ch)$: $a = 0.81 m/c^2$ as	n Earth h haigh
• Gravitatio	EPE = Q (V); Q is the charge,	V is the volts
• Power (measured i	in $W = J/s$) is the rate of use of energy	rgy
• Examples:		
• A charge of 0.5 energy did this t	5 C is pumped by a battery "up" 1.: ake? EPE = QV = 0.5 C x 1.5 V =	5 V. How much 0.75 J
• A mass of 1.0	kg is raised 1.0 m. How much worl	k was done?
$W = \Delta GPE = 1.0$	$0 \text{ kg x } 9.81 \text{ m/s}^2 \text{ x } 1.0 \text{ m} = 9.81 \text{ J}$	
	ISP209f5 Lecture 12	-2-

Where are we?

- We have talked about two forces in nature
 - Gravity General Relativity (Space and time are tied into a 4 dimensional space-time. Gravity is the result of the curvature of space.)
 - Electromagnetism Electric and magnetic forces are the result of charge and the motion of charge.
 - Are the gravity and electricity related? Are all the forces in nature related?
- The modern picture of electromagnetism is that the electric force is carried by the photon.
- A photon is a small bundle of energy. We see photons in the range of 1.8 eV (red) to 3.1 eV (violet) [1 eV = 1.6E-19 J]

-3-

T

MICHIGAN STATE

Inverse square law

Inverse square law

intensity = $\frac{L[Watts]}{4\pi d^2}$

L is the luminosity, d is the distance to the source

This explains why the electric force has the form it does:

MICHIGAN STATE

Wavelength and Frequency

$\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$

A mystery – The Photo Electric Effect

• Photons, if they have sufficient energy, can knock electrons out of a solid – photo electric effect

• In the wave picture of light, the height of the wave would matter (intensity). The frequency would not matter.

• In nature it is the other way around. The frequency is what matters.

• This makes sense if we consider light as little packets of energy (photons). The frequency determines the energy of the photon.

• If the energy of a photon is high enough, it can knock an electron out.

• Light behaves like a wave and like a particle. Which is it?

An even bigger surprise!

- Particles like electrons also behave like waves!
- Example Demo: electron diffraction
- de Broglie wavelength of a particle (h is Plank's constant)

$$h = \frac{h}{p}; \quad h = 6.625 \times 10^{-34} \; J \cdot s$$

What is the wave length an electron with an energy of 30 keV?

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2m_e E}} = \frac{6.625 \times 10^{-34} Js}{\sqrt{2 \cdot 9.11 \times 10^{-31} kg \cdot 30 keV} \cdot \frac{1000eV}{keV} \frac{1.6 \times 10^{-19} J}{eV}}}{\lambda = 7.084 \times 10^{-12} m}$$

ISP20915 Lecture 12

What is waving?

- Probability all particles are characterized by a "wave function". The square of the wave functions give the probability density of finding a particle per unit volume
- The square of the wave function times a volume give the probability of finding the particle in that volume.
- This is the picture of Erwin Schrödinger: Matter is defined by the evolution in time of a wave function.

$H\Psi = E\Psi \quad \Psi \rightarrow$ wave function

ISP209f5 Lecture 12

-10-

MICHIGAN STATE UNIVERSITY

Bosons and Fermions

- Particles come in two types
- Bosons have the property that they can overlap. Examples are photons and certain atoms (helium)
- Fermions can not exist in the same state. Examples – electrons, protons.
- The fermion nature of elections explains atomic structure

MICHIGAN STATE UNIVERSIT

Electron Wave functions in atoms

The nucleus sits at the center and these picture show possible regions were the electrons might be.

