

Today

- Announcements:
 - HW#5 and HW#6 are due tomorrow, October 19th.
- Energy
- The electromagnetic spectrum
- Quantum Mechanics and Atoms

Energy and Power

- Energy is the ability to do work: Work = force x distance
- Energy comes in two forms
 - Kinetic energy of motion
 - Potential energy of position

$$KE = \frac{1}{2}mv^2$$

- **Gravitational** GPE = m (gh); $g = 9.81 \text{ m/s}^2$ on Earth, h height
- Electric EPE = Q (V); Q is the charge, V is the volts
- Power (measured in W = J/s) is the rate of use of energy
- Examples:
 - A charge of 0.5 C is pumped by a battery "up" 1.5 V. How much energy did this take? EPE = QV = 0.5 C x 1.5 V = 0.75 J
 - A mass of 1.0 kg is raised 1.0 m. How much work was done? W = Δ GPE = 1.0 kg x 9.81m/s² x 1.0 m = 9.81 J

Where are we?

- We have talked about two forces in nature
 - Gravity General Relativity (Space and time are tied into a 4 dimensional space-time. Gravity is the result of the curvature of space.)
 - Electromagnetism Electric and magnetic forces are the result of charge and the motion of charge.
 - Are the gravity and electricity related? Are all the forces in nature related?
- The modern picture of electromagnetism is that the electric force is carried by the photon.
- A photon is a small bundle of energy. We see photons in the range of 1.8 eV (red) to 3.1 eV (violet) [1 eV = 1.6E-19 J]

Inverse square law

Inverse square law

intensity = $\frac{L[Watts]}{4\pi d^2}$ L is the luminosity, d is the distance to the source

This explains why the electric force has the form it does:

The Electromagnetic Spectrum

Around Visible Electromagnetic Spectrum

Wavelength and Frequency

A mystery – The Photo Electric Effect

- Photons, if they have sufficient energy, can knock electrons out of a solid photo electric effect
- In the wave picture of light, the height of the wave would matter (intensity). The frequency would not matter.
- In nature it is the other way around. The frequency is what matters.
- This makes sense if we consider light as little packets of energy (photons). The frequency determines the energy of the photon.
- If the energy of a photon is high enough, it can knock an electron out.
- Light behaves like a wave and like a particle. Which is it?

An even bigger surprise!

- Particles like electrons also behave like waves!
- Example Demo: electron diffraction
- de Broglie wavelength of a particle (h is Plank's constant)

$$\lambda = \frac{h}{p}; \quad h = 6.625 \times 10^{-34} J \cdot s$$

What is the wave length an electron with an energy of 30 keV?

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2m_e E}} = \frac{6.625 \times 10^{-34} Js}{\sqrt{2 \cdot 9.11 \times 10^{-31} kg \cdot 30 keV} \cdot \frac{1000eV}{keV} \frac{1.6 \times 10^{-19} J}{eV}}{keV}}$$
$$\lambda = 7.084 \times 10^{-12} m$$

ISP209f5 Lecture 12

What is waving?

- Probability all particles are characterized by a "wave function". The square of the wave functions give the probability density of finding a particle per unit volume.
- The square of the wave function times a volume give the probability of finding the particle in that volume.
- This is the picture of Erwin Schrödinger: Matter is defined by the evolution in time of a wave function.

$H\Psi = E\Psi \quad \Psi \rightarrow$ wave function

Bosons and Fermions

- Particles come in two types
- Bosons have the property that they can overlap. Examples are photons and certain atoms (helium)
- Fermions can not exist in the same state. Examples – electrons, protons.
- The fermion nature of elections explains atomic structure

Electron Wave functions in atoms

The nucleus sits at the center and these picture show possible regions were the electrons might be.

Atoms and molecules exists fixed states of energy

Energy of photon = $E_i - E_f = 3.0 - 0 = 3.0 \text{ eV}$

Problems?

- How can a particle interfere with itself? This implies the particle, somehow, takes more than one path at the same time.
- Schödinger's Cat: Is the cat alive or dead?
- Einstein, Podolsky and Rosen Effect

 $\downarrow \bullet decay \downarrow \uparrow decay$

If we measure one,

 we know what the other is. Information travels faster than light.

ISP209f5 Lecture 12

Heisenberg's Uncertainty Principle

- If a particle has a wavelength, its position and speed are not perfectly defined.
- Uncertainty Principle: It is not possible to know exactly the position and momentum of a particle at the same time. $\Delta x \Delta p \ge \frac{h}{4\pi}$
- There is no absolute knowledge. The Newtonian view of the world (if everything were known, everything could be predicted) in not attainable.