Today - Exam \#1 Review

- Exam \#1 is Thursday Oct. 6 in this room, BPS 1410
- The exam is 40 multiple choice questions. There are a few questions where you will have to use a formula.
- Bring your student ID
- You will have the full 80 minutes for the exam.
- You can bring one sheet of notes (front and back)

UN IVERSITY

- We will read through the review sheet.
- I will give some sample problems.
- Some of the exam problems will be from the homework.
- A couple of the samples we will use as clicker problems
- Grab your review sheet and hold on.

Program for Today

- What is not a correct way to express 34,000 in scientific notation:
A. $3.4 \mathrm{E}+4$
B. $340000 \mathrm{E}-1$
C. $34 . \mathrm{E}+3$
D. $0.34 \mathrm{E}-5$
E. $340 . \mathrm{E}+2$

The correct answer is D.

Motion

- Which of the following is not a vector:
A. Position
B. Velocity
C. Speed
D. Force
E. Momentum

The correct answer is C.

- Velocity is the rate of change of position
- Acceleration if the rate of change on velocity
- Force is the rate of change on momentum
- Momentum = mass x velocity

Picture of the flight of a ball

Where is the acceleration 0 ? F - non of the choices Where is speed the smallest? C - slope is zero, hence speed is 0 .

Vector Problem

- Jane is running east with a speed of $2 \mathrm{~m} / \mathrm{s}$. When she gets directly north of Susan, she throws the ball at $2 \mathrm{~m} / \mathrm{s}$. What directions should she throw the ball?

ISP209f5 Lecture 9

In the ship

- What period would a person traveling with the clock measure?

Answer: 1 s

Time is relative!

Time Dilation

World record v / c (for electrons) is from SLAC in California: 0.999999875 $\gamma=20,000$

v / c	γ
.1	1.00504
.2	1.02062
.3	1.04828
.4	1.09109
.5	1.1547
.6	1.25
.7	1.40028
.8	1.6667
.9	2.29416
1	∞

-13 -

Newton's Laws Problem

A car is moving in a straight line at a constant speed of 60 mph . What can we say about the force of friction (air and rolling friction) on the car?
A.The force of friction is larger than the force of the tires on the road.
B. The force of friction is equal to the force applied by the tires to the road.
C.Friction must be small.
D.The force of friction must be a little smaller than the force of the tires on the road.
E. None of these statements is correct.

MICHIGAN STATE

MICHIGAN STATE
UN IVERSITY
Two examples using the Law of Gravity
When the space shuttle is in orbit, what can we say about the force the shuttle exerts on the Earth? Choose the best answer.
A. It is the same as the force the Earth exerts on the shuttle.
B. The Earth pulls harder on the shuttle.
C. The shuttle pulls harder on the Earth than the

Earth does on the shuttle.
D. None of these statements is correct.
E.There is no force on the Earth since the shuttle is in orbit.

- What is the force between two 50 kg people 0.10
m apart?
$F=\frac{G m_{1} m_{2}}{r_{12}^{2}}=\frac{\left(6.673 E-11 \mathrm{Nm}^{2} / / \mathrm{kg}^{2}\right) 50 \mathrm{~kg} \times 50 \mathrm{~kg}}{(0.1 \mathrm{~m})^{2}}=1.67 E-5 \mathrm{~N}$
- What is the acceleration caused by this force?
$F=m a \rightarrow a \equiv g=\frac{F}{m}=\frac{1.67 E-5 \mathrm{~N}}{50 \mathrm{~kg}}=3.34 \mathrm{E}-6 \mathrm{~m} / \mathrm{s}^{2}$
- What would happen if the distance were doubled, but the masses are the same?
$F_{2 r}=\frac{G m_{e} m_{p}}{\left(2 r_{e}\right)^{2}}=\frac{G m_{e} m_{p}}{4\left(r_{e}\right)^{2}}=\frac{1}{4} \times F_{r}$
- Why is an astronaut in orbit weightless?
A). Because they are always in free fall, but constantly miss the Earth.
B). Because gravity from the Earth and moon cancels.
C). Because gravity from the Earth and Sun cancels.
D). Because there is no gravity in space.

Fraction of Energy Converted

- In a chemical reaction not all the mass can be converted to energy. Actually only a very small fraction (the exact value of the fraction depends on the chemical reaction) about 1×10^{-10} of all the mass is converted to energy.
- Some other fractions:

Reaction	Fraction	Example
Matter-Antimatter Annihilation	1	No common example
Fusion	0.007	Power source of the Sun
Fission	0.001	Nuclear power plant
Chemical	1×10^{-10}	Burning coal
Mechanical	1×10^{-15}	Compressing a spring
ISP20955 Lecture 9		

Picture

The following is a picture of the process:

The amount of energy is $E=m_{\text {converted }} c^{2}$
$\mathrm{m}_{\text {converted }}=$ (Mass to start) x fraction

