The origin of heavy elements in the solar system

each process contribution is a mix of many events ! 1

Heavy elements in Metal Poor Halo Stars

CS22892-052 red (K) giant located in halo distance: 4.7 kpc mass ~0.8 M_sol [Fe/H]= -3.0 [Dy/Fe]= +1.7

recall: [X/Y]=log(X/Y)-log(X/Y)_{solar}

> old stars - formed before Galaxy was mixed they preserve local pollution from individual nucleosynthesis events

A single (or a few) r-process event(s)

Overview heavy element nucleosynthesis

process	conditions	timescale	site
s-process	T~ 0.1 GK	10 ² yr	Massive stars (weak)
(n-capture,)	τ _n ~ 1-1000 yr, n _n ~10 ⁷⁻⁸ /cm ³	and 10 ⁵⁻⁶ yrs	Low mass AGB stars (main)
r-process	T~1-2 GK	< 1s	Type II Supernovae ?
(n-capture,)	τ _n ~ μs, n _n ~10 ²⁴ /cm ³		Neutron Star Mergers ?
p-process ((γ,n),)	T~2-3 GK	~1s	Type II Supernovae

The r-process

show movie

Waiting point approximation

Definition: **ASSUME** (n,γ) - (γ,n) equilibrium within isotopic chain

How good is the approximation ?

This is a valid assumption during most of the r-process

BUT: freezeout is neglected

Freiburghaus et al. ApJ 516 (2999) 381 showed agreement with dynamical models

Consequences

During (n,γ) - (γ,n) equilibrium abundances within an isotopic chain are given by:

$$\frac{Y(Z, A+1)}{Y(Z, A)} = n_n \frac{G(Z, A+1)}{2G(Z, A)} \left[\frac{A+1}{A} \frac{2\pi\hbar^2}{m_u kT} \right]^{3/2} \exp(S_n / kT)$$

time independent

- can treat whole chain as a single nucleus in network
- only slow beta decays need to be calculated dynamically

neutron capture rate independent

(therefore: during most of the r-process n-capture rates do not matter !)

7

Endpoint of the r-process

Consequences of fission

Note: the exact endpoint of the r-process and the degree and impact of fission are unknown because:

- Site conditions not known is n/seed ratio large enough to reach fission ? (or even large enough for fission cycling ?)
- Fission barriers highly uncertain
- Fission fragment distributions not reliably calculated so far (for fission from excited states !)

Role of beta delayed neutron emission

Neutron rich nuclei can emit one or more neutrons during β -decay if $S_n < Q_\beta$ (the more neutron rich, the lower S_n and the higher Q_β)

If some fraction of decay goes above S_n in daughter nucleus then some fraction P_n of the decays will emit a neutron (in addition to e⁻ and v)

(generally, neutron emission competes favorably with γ -decay - strong interaction !)

Effects: <u>during r-process</u>: none as neutrons get recaptured quickly

during freezeout • modification of final abundance

late time neutron production (those get recaptured)

Calculated r-process production of elements (Kratz et al. ApJ 403 (1993) 216):

smoothing effect from β-delayed n emission !

Summary: Nuclear physics in the r-process

Quantity		Effect
S _n	neutron separation energy	path
T _{1/2}	β-decay half-lives	 abundance pattern timescale
P _n	β-delayed n-emission branchings	final abundance pattern
fission (branchings and products)		 endpoint abundance pattern? degree of fission cycling
G	partition functions	 path (very weakly)
N _A <σv>	neutron capture rates	 final abundance pattern during freezeout ? conditions for waiting point approximation

The r-process path

National Superconducting Cyclotron Laboratory at Michigan State University

New Coupled Cyclotron Facility – experiments since mid 2001

Fast beam fragmentation facility – allows event by event particle identification

First r-process experiments at new NSCL CCF facility (June 02)

Measure:

- β-decay half-lives
- Branchings for β -delayed n-emission

Detect:

- Particle type (TOF, dE, p)
- Implantation time and location
- β-emission time and location
- neutron- β coincidences

New NSCL Neutron detector NERO

NSCL BCS – Beta Counting System

- 4 cm x 4 cm active area
- 1 mm thick
- 40-strip pitch in x and y dimensions ->1600 pixels

NERO – Neutron Emission Ratio Observer

Specifications:

shielding

60 counters total

(16 ³He , 44 BF₃)

polyethylene blockExtensive exterior

• 43% total neutron

efficiency (MCNP)

• 60 cm x 60 cm x 80 cm

Polyethylene Moderator

Boron Carbide Shielding

June 2002 Data – preliminary results

Neutron Data

