

As hydrogen is exhausted in the (convective) core of a star (point 2)
it moves away from the main sequence (point 3)

What happens to the star?

- lower T \rightarrow redder
- same L \rightarrow larger (Stefan's L.) star becomes a red giant

For completeness - here's what's happening in detail (5 solar mass ZAMS star):

I. Iben, Ann. Rev. Astron. Astroph. Vol 5 (1967) P. 571

What happens at hydrogen exhaustion

 (assume star had convective core)1. Core contracts and heats

2. Core He burning sets in

He core burning
\rightarrow lower mass stars become bluer low Z stars jump to the horizontal branch

2. a $\left(\mathrm{M}<2.25 \mathrm{M}_{0}\right)$ Degenerate He core

H shell burning ignites
degenerate, not burning He core

onset of electron degeneracy halts contraction

then He core grows by H-shell burning until He-burning sets in.
\rightarrow He burning is initially unstable (He flash)
in degenerate electron gas, pressure does not depend on temperature (why ?) therefore a slight rise in temperature is not compensated by expansion
\rightarrow thermonuclear runaway:
\rightarrow • rise temperature

- accelerate nuclear reactions
- increase energy production

Why does the star expand and become a red giant?

Because of higher Coulomb barrier He burning requires much higher temperatures
\rightarrow drastic change in central temperature
\rightarrow star has to readjust to a new configuration

Qualitative argument:

- need about the same Luminosity - similar temperature gradient dT/dr
- now much higher T_{c} - need larger star for same dT/dr

Lower mass stars become red giants during shell H-burning

Globular Cluster M10

He burning overview

- Lasts about 10\% of H-burning phase
- Temperatures: ~300 Mio K
- Densities ~ $10^{4} \mathrm{~g} / \mathrm{cm}^{3}$

$$
\begin{aligned}
\text { Reactions: } \quad{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He} \rightarrow{ }^{12} \mathrm{C} & \text { (triple } \alpha \text { process) } \\
{ }^{12} \mathrm{C}+{ }^{4} \mathrm{He} \rightarrow{ }^{16} \mathrm{O} & \left({ }^{12} \mathrm{C}(\alpha, \gamma)\right)
\end{aligned}
$$

Main products: carbon and oxygen (main source of these elements in the universe)

Helium burning 1 - the 3α process

First step:
$\alpha+\alpha \rightarrow{ }^{8} \mathrm{Be}$
unbound by $\sim 92 \mathrm{keV}$ - decays back to 2α within $2.6 \mathrm{E}-16 \mathrm{~s}$!
but small equilibrium abundance is established
Second step:
${ }^{8} \mathrm{Be}+\alpha \rightarrow{ }^{12} \mathrm{C}^{*}$ would create ${ }^{12} \mathrm{C}$ at excitation energy of $\sim 7.7 \mathrm{MeV}$

1954 Fred Hoyle (now Sir Fred Hoyle) realized that the fact that there is carbon in the universe requires a resonance in ${ }^{12} \mathrm{C}$ at $\sim 7.7 \mathrm{MeV}$ excitation energy

1957 Cook, Fowler, Lauritsen and Lauritsen at Kellogg Radiation Laboratory at Caltech discovered a state with the correct properties (at 7.654 MeV)
$\longrightarrow \quad$ Experimental Nuclear Astrophysics was born

How did they do the experiment?

- Used a deuterium beam on a 11B target to produce 12B via a (d, p) reaction.
- 12B β-decays within 20 ms into the second excited state in 12C
- This state then immediately decays under alpha emission into 8Be
- Which immediately decays into 2 alpha particles

So they saw after the delay of the b-decay 3 alpha particles coming from their target after a few ms of irradiation

This proved that the state can also be formed by the 3 alpha process ...
\rightarrow removed the major roadblock for the theory that elements are made in stars
\rightarrow Nobel Prize in Physics 1983 for Willy Fowler (alone !)

Third step completes the reaction:

$$
\text { FIRST_STEP: } \quad \alpha+\alpha={ }^{8} \mathrm{Be}
$$

Note: ${ }^{8} \mathrm{Be}$ ground state is a 92 keV resonance for the $\alpha+\alpha$ reaction

SECOND_STEP: $\quad{ }^{8} \mathrm{Be}(\alpha, \gamma)^{12} \mathrm{C}$

Calculation of the 3α rate in stellar He burning

Under stellar He-burning conditions, production and destruction reactions for ${ }^{12} \mathrm{C}^{*}(7.6 \mathrm{MeV})$ are very fast (as state mainly α-decays !)
therefore the whole reaction chain is in equilibrium:

$$
\alpha+\alpha \not{ }^{8} \mathrm{Be} \quad{ }^{8} \mathrm{Be}+\alpha \not{ }^{12} \mathrm{C}^{*}(7.7 \mathrm{MeV})
$$

The ${ }^{12} \mathrm{C}^{*}(7.6 \mathrm{MeV})$ abundance is therefore given by the Saha Equation:

$$
Y_{12 \mathrm{C}(7.6 \mathrm{MeV})}\left(\frac{2 \pi \hbar^{2}}{m_{12 \mathrm{C}} k T}\right)^{3 / 2}=Y_{4 \mathrm{He}}^{3} \rho^{2} N_{A}^{2}\left(\frac{2 \pi \hbar^{2}}{m_{4 \mathrm{He}} k T}\right)^{9 / 2} \mathrm{e}^{-\mathrm{Q} / \mathrm{kT}}
$$

with $Q / c^{2}=m_{12 \mathrm{C}(7.7)}-3 m_{\alpha}$
using $\quad m_{12 \mathrm{C}} \approx 3 m_{4 \mathrm{He}}$
one obtains: $Y_{12 \mathrm{C}(7.6 \mathrm{MeV})}=3^{3 / 2} Y_{4 \mathrm{He}}^{3} \rho^{2} N_{A}^{2}\left(\frac{2 \pi \hbar^{2}}{m_{4 \mathrm{He}} k T}\right)^{3} \mathrm{e}^{-\mathrm{Q} / \mathrm{kT}}$
The total 3α reaction rate (per s and cm^{3}) is then the total gamma decay rate (per s and cm^{3}) from the 7.6 MeV state.

This reaction represents the leakage out of the equilibrium !

Therefore for the total 3α rate r :

$$
r=Y_{12 \mathrm{C}(7.6 \mathrm{MeV})} \rho N_{A} \frac{\Gamma_{\gamma}}{\hbar}
$$

And with the definition

$$
\lambda_{3 \alpha}=\frac{1}{6} Y_{\alpha}^{2} \rho^{2} N_{A}^{2}<\alpha \alpha \alpha>
$$

one obtains:

$$
N_{A}^{2}<\alpha \alpha \alpha>=6 \cdot 3^{3 / 2} \rho^{2} N_{A}^{2}\left(\frac{2 \pi \hbar^{2}}{m_{4 \mathrm{He}} k T}\right)^{3} \frac{\Gamma_{\gamma}}{\hbar} \mathrm{e}^{-\mathrm{Q} / \mathrm{kT}}
$$

(Nomoto et al. A\&A 149 (1985) 239)
With the exception of masses, the only information needed is the gamma width of the 7.6 MeV state in ${ }^{12} \mathrm{C}$. This is well known experimentally by now.

Helium burning 2 - the ${ }^{12} \mathrm{C}(\alpha, \gamma)$ rate

But some C is converted into $\mathrm{O} \ldots$

complications: • very low cross section makes direct measurement impossible

- subthreshold resonances cannot be measured at resonance energy
- Interference between the E1 and the E2 components

Therefore:
Uncertainty in the ${ }^{12} \mathrm{C}(\alpha, \gamma)$ rate is the single most important nuclear physics uncertainty in astrophysics

Affects: •C/O ration \rightarrow further stellar evolution (C-burning or O-burning ?)

- iron (and other) core sizes (outcome of SN explosion)
- Nucleosynthesis (see next slide)

Some current results for $\mathrm{S}(300 \mathrm{keV})$:

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{E} 2}=53+13-18 \mathrm{keV} \mathrm{~b} \text { (Tischhauser et al. PRL88(2002)2501 } \\
& \mathrm{S}_{\mathrm{E} 1}=79+21-21 \mathrm{keV} \mathrm{~b} \text { (Azuma et al. PRC50 (1994) 1194) }
\end{aligned}
$$

But others range among groups larger!

Massive star nucleosynthesis model as a function of ${ }^{12} \mathrm{C}(\alpha, \gamma)$ rate

- This demonstrates the sensitivity
- One could deduce a preference for a total $S(300)$ of $\sim 120-220$ (But of course we cannot be sure that the astrophysical model is right)

End of core helium burning and beyond

\rightarrow note complicated multiple burning layers !!!

Further evolution of burning conditions

Woosley, Heger, Weaver, Rev. Mod. Phys 74 (2002)1015

Carbon burning

Burning conditions:

```
for stars > 8 M (solar masses) (ZAMS)
```

T~ 600-700 Mio
$\rho \sim 10^{5}-10^{6} \mathrm{~g} / \mathrm{cm}^{3}$

Major reaction sequences:

$$
{ }^{12} \mathrm{C}+{ }^{12} \mathrm{C} \rightarrow{ }^{24} \mathrm{Mg}^{*} \rightarrow{ }^{23} \mathrm{Mg}+n-2.62 \mathrm{MeV} \quad \underset{ }{\rightarrow 20} \mathrm{Ne}+\alpha+4.62 \mathrm{MeV} \quad \begin{aligned}
& \text { dominates } \\
& \text { by far }
\end{aligned}
$$

of course p's, n's, and a's are recaptured $\ldots{ }^{23} \mathrm{Mg}$ can b-decay into ${ }^{23} \mathrm{Na}$

Composition at the end of burning:
mainly ${ }^{20} \mathrm{Ne},{ }^{24} \mathrm{Mg}$, with some ${ }^{21,22} \mathrm{Ne},{ }^{23} \mathrm{Na},{ }^{24,25,26 \mathrm{Mg},{ }^{26,27} \mathrm{Al}}$
of course ${ }^{16} \mathrm{O}$ is still present in quantities comparable with ${ }^{20} \mathrm{Ne}$ (not burning ... yet) 21

Neon burning

Burning conditions:

$$
\begin{aligned}
& \text { for stars }>12 \mathbf{M}_{\mathrm{o}} \text { (solar masses) (ZAMS) } \\
& \mathrm{T} \sim 1.3-1.7 \text { Bio } \mathrm{K} \\
& \rho \sim 10^{6} \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

Why would neon burn before oxygen ???

Answer:
Temperatures are sufficiently high to initiate photodisintegration of ${ }^{20} \mathrm{Ne}$

$$
\left.\begin{array}{l}
{ }^{20} \mathrm{Ne}+\gamma \rightarrow{ }^{16} \mathrm{O}+\alpha \\
{ }^{16} \mathrm{O}+\alpha \rightarrow{ }^{20} \mathrm{Ne}+\gamma
\end{array}\right\} \quad \text { equilibrium is established }
$$

this is followed by (using the liberated helium)

$$
{ }^{20} \mathrm{Ne}+\alpha \rightarrow{ }^{24} \mathrm{Mg}+\gamma
$$

so net effect: $\quad 2^{20} \mathrm{Ne} \rightarrow{ }^{16} \mathrm{O}+{ }^{24} \mathrm{Mg}+4.59 \mathrm{MeV}$.

Photodisintegration

PHOTODISINTEGRATION $Y(\gamma, a) X$

(Rolfs, Fig. 8.5.)

Calculations of inverse reaction rates

A reaction rate for a process like ${ }^{20} \mathrm{Ne}+\gamma \rightarrow{ }^{16} \mathrm{O}+\alpha \quad$ can be easily calculated from the inverse reaction rate ${ }^{16} \mathrm{O}+\alpha \rightarrow{ }^{20} \mathrm{Ne}+\gamma$ using the formalism developed so far.

In general there is a simple relationship between the rates of a reaction rate and its inverse process (if all particles are thermalized)

Derivation of "detailed balance principle":

Consider the reaction $A+B \rightarrow C$ with Q-value Q in thermal equilibrium. Then the abundance ratios are given by the Saha equation:

$$
\frac{n_{A} n_{B}}{n_{C}}=\frac{g_{A} g_{B}}{g_{C}}\left(\frac{m_{A} m_{B}}{m_{C}}\right)^{3 / 2}\left(\frac{k T}{2 \pi \hbar^{2}}\right)^{3 / 2} \mathrm{e}^{-Q / k T}
$$

In equilibrium the abundances are constant per definition. Therefore in addition

$$
\begin{aligned}
& \quad \frac{d n_{C}}{d t}=n_{A} n_{B}\langle\sigma v\rangle-\lambda_{C} n_{C}=0 \\
& \text { or } \quad \frac{\lambda_{C}}{\langle\sigma v\rangle}=\frac{n_{A} n_{B}}{n_{C}}
\end{aligned}
$$

If $\langle\sigma v\rangle$ is the $A+B \rightarrow C$ reaction rate, and λ_{C} is the $C \rightarrow A+B$ decay rate
Therefore the rate ratio is defined by the Saha equation as well!
Using both results one finds

$$
\frac{\lambda_{C}}{<\sigma v>}=\frac{g_{A} g_{B}}{g_{C}}\left(\frac{m_{A} m_{B}}{m_{C}}\right)^{3 / 2}\left(\frac{k T}{2 \pi \hbar^{2}}\right)^{3 / 2} \mathrm{e}^{-Q / k T}
$$

or using $m_{C} \sim m_{A}+m_{B}$ and introducing the reduced mass μ

Detailed balance:

$$
\frac{\lambda_{C}}{\langle\sigma v>}=\frac{g_{A} g_{B}}{g_{C}}\left(\frac{\mu k T}{2 \pi \hbar^{2}}\right)^{3 / 2} \mathrm{e}^{-Q / k T}
$$

So just by knowing partition functions g and mass m of all participating particles on can calculate for every reaction the rate for the inverse process.

Partition functions:

For a particle in a given state i this is just $g_{i}=2 J_{i}+1$
However, in an astrophysical environment some fraction of the particles can be in thermally excited states with different spins. The partition function is then given by:

$$
g=\sum_{i} g_{i} e^{-E_{i} / k T}
$$

Oxygen burning

Burning conditions:

$$
\begin{aligned}
& \mathrm{T} \sim 2 \mathrm{Bio} \\
& \rho \sim 10^{7} \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

Major reaction sequences:

$$
\begin{aligned}
{ }^{16} \mathrm{O}+{ }^{16} \mathrm{O} \rightarrow{ }^{32} \mathrm{~S}^{*} & \rightarrow{ }^{31} \mathrm{~S}+n+1.45 \mathrm{MeV} \\
& \rightarrow{ }^{31} \mathrm{P}+p+7.68 \mathrm{MeV} \\
& \rightarrow{ }^{30} \mathrm{P}+d-2.41 \mathrm{MeV} \\
& \rightarrow{ }^{28} \mathrm{Si}+\alpha+9.59 \mathrm{MeV} .
\end{aligned}
$$

plus recapture of n, p, d, α

Main products:

${ }^{28} \mathrm{Si},{ }^{32} \mathrm{~S}(90 \%)$ and some ${ }^{33,34} \mathrm{~S},{ }^{35,37} \mathrm{CI},{ }^{36.38} \mathrm{Ar},{ }^{39,41} \mathrm{~K},{ }^{40,42} \mathrm{Ca}$

Silicon burning

Burning conditions:

T~ 3-4 Bio
$\rho \sim 10^{9} \mathrm{~g} / \mathrm{cm}^{3}$

Reaction sequences:

- Silicon burning is fundamentally different to all other burning stages.
- Complex network of fast $(\gamma, \mathbf{n}),(\gamma, \mathbf{p}),(\gamma, \mathbf{a}),(\mathbf{n}, \gamma),(\mathbf{p}, \gamma)$, and (\mathbf{a}, γ) reactions
- The net effect of Si burning is: $2{ }^{28} \mathrm{Si}-->{ }^{56} \mathrm{Ni}$,
need new concept to describe burning:
Nuclear Statistical Equilibrium (NSE)
Quasi Statistical Equilibrium (QSE)

Nuclear Statistical Equilibrium

Definition:

In NSE, each nucleus is in equilibrium with protons and neutrons
Means: the reaction $\quad Z^{*} p+N$ * $n \quad<-->(Z, N)$ is in equilibrium
Or more precisely: $Z \cdot \mu_{p}+N \cdot \mu_{n}=\mu_{(\mathrm{Z}, \mathrm{N})} \quad$ for all nuclei (Z,N)

NSE is established when both, photodisintegration rates of the type

$$
\begin{array}{lll}
(\mathrm{Z}, \mathrm{~N})+\gamma & -> & (\mathrm{Z}-1, \mathrm{~N})+\mathrm{p} \\
(\mathrm{Z}, \mathrm{~N})+\gamma & \rightarrow & (\mathrm{Z}, \mathrm{~N}-1)+\mathrm{n} \\
(\mathrm{Z}, \mathrm{~N})+\gamma & -> & (\mathrm{N}-2, \mathrm{~N}-2)+\alpha
\end{array}
$$

and capture reactions of the types

$$
\begin{array}{lll}
(\mathrm{Z}, \mathrm{~N})+\mathrm{p} & -> & (\mathrm{Z}+1, \mathrm{~N}) \\
(\mathrm{Z}, \mathrm{~N})+\mathrm{n} & -> & (\mathrm{Z}, \mathrm{~N}+1) \\
(\mathrm{Z}, \mathrm{~N})+\alpha & --> & (\mathrm{Z}+2, \mathrm{~N}+2)
\end{array}
$$

NSE is established on the timescale of these reaction rates (the slowest reaction) A system will be in NSE if this timescale is shorter than the timescale for the temperature and density being sufficiently high.

Nuclear Abundances in NSE

The ratio of the nuclear abundances in NSE to the abundance of free protons and neutrons is entirely determined by

$$
Z \cdot \mu_{p}+N \cdot \mu_{n}=\mu_{(\mathrm{Z}, \mathrm{~N})}
$$

which only depends on the chemical potentials

$$
\mu=m c^{2}+k T \ln \left[\frac{n}{g}\left(\frac{h^{2}}{2 \pi m k T}\right)^{3 / 2}\right]
$$

So all one needs are density, temperature, and for each nucleus mass and partition function (one does not need reaction rates !! - except for determining whether equilibrium is indeed established)

Solving the two equations on the previous page yields for the abundance ratio:

$$
Y(Z, N)=Y_{p}^{Z} Y_{n}^{N} G(Z, N)\left(\rho N_{A}\right)^{A-1} \frac{A^{3 / 2}}{2^{A}}\left(\frac{2 \pi \hbar^{2}}{m_{u} k T}\right)^{\frac{3}{2}(A-1)} \mathrm{e}^{B(Z, N) / k T}
$$

with the nuclear binding energy $B(Z, N)$

Some features of this equation:

- in NSE there is a mix of free nucleons and nuclei
- higher density favors (heavier) nuclei
- higher temperature favors free nucleons (or lighter nuclei)
- nuclei with high binding energy are strongly favored

To solve for $\mathrm{Y}(\mathrm{Z}, \mathrm{N})$ two additional constraints need to be taken into account:
Mass conservation $\quad \sum_{i} A_{i} Y_{i}=1$
Proton/Neutron Ratio $\sum_{i} Z_{i} Y_{i}=Y_{e}$

In general, weak interactions are much slower than strong interactions.
Changes in Y_{e} can therefore be calculated from beta decays and electron captures on the NSE abundances for the current, given Y_{e}

In many cases weak interactions are so slow that Y_{e} is roughly fixed.

Sidebar - another view on NSE: Entropy

In Equilibrium the entropy has a maximum dS=0

- This is equivalent to our previous definition of equilibrium using chemical potentials: First law of thermodynamics:

$$
d E=T d S+\rho N_{A} \sum_{i} \mu_{i} d Y_{i}-p d V
$$

so as long as $d E=d V=0$, we have in equilibrium ($d S=0$) :

$$
\sum_{i} \mu_{i} d Y_{i}=0
$$

for any reaction changing abundances by $d Y$

For $\mathrm{Zp}+\mathrm{Nn}$--> (Z, N) this yields again

$$
Z \cdot \mu_{p}+N \cdot \mu_{n}=\mu_{(\mathrm{Z}, \mathrm{~N})}
$$

There are two ways for a system of nuclei to increase entropy:

1. Generate energy (more Photon states) by creating heavier, more bound nuclei
2. Increase number of free nucleons by destroying heavier nuclei

These are conflicting goals, one creating heavier nuclei around iron/nickel and the other one destroying them
\rightarrow The system settles in a compromise with a mix of nucleons and most bound nuclei
\rightarrow for FIXED temperature:
high entropy per baryon (low ρ, high T) \rightarrow more nucleons
low entropy per baryon (high ρ, low T) \rightarrow more heavy nuclei
(entropy per baryon (if photons dominate): ~ T^{3} / ρ)

NSE composition $\left(\mathrm{Y}_{\mathrm{e}}=0.5\right)$

after Meyer, Phys Rep. 227 (1993) 257 "Entropy and nucleosynthesis"

Incomplete Equilibrium - Equilibrium Cluster

Often, some, but not all nuclei are in equilibrium with protons and neutrons (and with each other).

A group of nuclei in equilibrium is called an equilibrium cluster. Because of reactions involving single nucleons or alpha particles being the mediators of the equilibrium, neighboring nuclei tend to form equilibrium clusters, with cluster boundaries being at locations of exceptionally slow reactions.

This is referred as Quasi Statistical Equilibrium (or QSE)

Typical Example:
3α rate is slow $\longrightarrow \alpha$ particles are not in full NSE

NSE during Silicon burning

- Nuclei heavier than ${ }^{24} \mathrm{Mg}$ are in NSE
- High density environment favors heavy nuclei over free nucleons
- $Y_{e} \sim 0.46$ in core Si burning due to some electron captures
\rightarrow main product ${ }^{56} \mathrm{Fe}(26 / 56 \sim 0.46)$

formation of an iron core

(in explosive Si burning no time for weak interactions, $\mathrm{Y}_{\mathrm{e}} \sim 0.5$ and therefore final product ${ }^{56} \mathrm{Ni}$)

Summary stellar burning

	TABLE 8.1 Evolutionary Stages of a $25 M_{\odot}$ Star $^{\text {a }}$				

Why do timescales get smaller?

Note: Kelvin-Helmholtz timescale for red supergiant $\sim 10,000$ years, so for massive stars, no surface temperature - luminosity change for C-burning and beyond

Final composition of a $25 \mathrm{M}_{0}$ star:

