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Background

Scalar and Vector Potentials

E⃗ = −∇Φ− 1

c

∂

∂t
A⃗, B⃗ = ∇⃗ × A⃗

Schrödinger’s Equation

iℏ∂tψ =

[
1

2m
(−iℏ∇)2 + V (r)

]
ψ.

Making a minimal substitution of −iℏ∇ → −iℏ∇−eA⃗/c and −iℏ∂t → −iℏ∂t−eΦ, the Schrödinger equation
becomes:

(−iℏ∇− eA⃗/c)2

2m
ψ + V ψ = (iℏ∂t − eΦ)ψ.

The Hamiltonian is then given by

H =
1

2m
(P⃗ − eA⃗/c)2 + eΦ

Gauge Invariance

Recall that the Gauge transformation is A⃗ → A⃗ + ∇Λ(r⃗, t) and Φ → Φ − 1
c

∂
∂tΛ for any function Λ. In

Quantum, we add that ψ → exp{ 1
ℏc ieΛ}ψ, which is simply adding a phase to the wavefunction. When you

combine the changes for A⃗, Φ⃗, and ψ⃗ you get invariance.

Particles in Constant Magnetic Field (Landau Levels)

Consider a particle mass m charge q with B = Bẑ. Classically, we expect to move following the cyclotron
frequency wc =

qB
m . Choose A⃗ = −Byx̂ for simplicity. The Hamiltonian is then

H =
1

2m

(
Px +

q

c
By

)2

+
1

2m
P 2
y

ignoring the motion in the z-direction. Note that px is a conserved quantity since H has no explicit x
dependence. So we are looking for eigenstates of Px, and we choose

ψ(x, y) = ψ(y)eikxx

where px = ℏkx. Then the Hamiltonian can be rearranged to be in the form of a simple harmonic oscillator:

Hkx
=

1

2m
P 2
y +

1

2m

(
qB

c
y + ℏkx

)2

=
1

2m
P 2
y +

mω2
c

2

(
y −

(
−ℏckx
qB

))2

1



Now consider adding a uniform electric field in the x̂ direction (assume no initial velocity in the ẑ-direction).
The Hamiltonian looks like:

H =
P 2
x

2m
+

1

2m
(Py − eAy/c)

2 − eEx

=
P 2
x

2m
+
e2B2

2mc2

[
x−

(
ℏcky
eB

+
mc2E

eB2

)]2
− mc2

2

(
E

B

)2

− PyE

B

=
P 2
x

2m
+
e2B2

2mc2
(x− x0)

2 − mc2

2

(
E

B

)2

− PyE

B

where

x0 =
ℏcky
eB

+
mc2E

eB2
,

the center of the harmonic oscillator.
Now suppose we wanted to calculate the average (drift) velocity of the particle in the ŷ direction. We

can exploit the fact that
mvy = Πy

so

vy =
Πy

m
=
hky
m

− eBx

mc

Averaging vy, we substitute in x0 for x:

v̄y =
hky
m

− eBx0
mc

=
hky
m

− eB

mc

(
ℏcky
eB

+
mc2E

eB2

)
= −Ec

B
.

Useful Commutation Relations:
[ri, Pj ] = 0 if i ̸= j
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Practice Final Fall 2019 Question 7

A particle of mass m and charge e is placed in a region with uniform magnetic field B⃗ along the ẑ axis.

a) Write the vector potential that describes the magnetic field such that A⃗ is in the ŷ direction.

b) Write the Hamiltonian with this vector potential.

c) Which quantities commute with the Hamiltonian?

(i) Px

(ii) Py

(iii) Pz

(iv) Px − eAx/c

(v) Py − eAy/c

(vi) Pz − eAz/c

Solutions

Part a

We know that we want Aµ to only have a term in the Ay term and produce only a magnetic field. In this
case, we need to satisfy the following condition (reducing the vector potential to the 3-components as Ao=0):

B⃗ = ∇⃗ × A⃗

=

(
∂

∂x
,
∂

∂y
,
∂

∂z
)× (Ax, Ay, Az

)
(0, 0, B) =

(
∂Az

∂y
− ∂Ay

∂z
,
∂Ax

∂z
− ∂Az

∂x
,
∂Ay

∂x
− ∂Ax

∂y

)
=

(
0, 0,

∂Ay

∂x

)
= (0, 0, Bx)

Meaning that Ay = Bxŷ.

Part b

We know that the Hamiltonian has the form of

H =
1

2m
(P⃗ − eA⃗/c)2 + eΦ

By plugging in the components of P⃗ and A⃗ and knowing that Ao = Φ = 0 we get the Hamiltonian to be

H =
P 2
x

2m
+

(Py − eBx/c)2

2m
+
P 2
z

2m

Part c

By looking at the Hamiltonian we see that there is an explicit dependence on x which rules out Px. Because
Px is rules out, so is Px − eAx/c. Recall that Ay has x dependence which we have already ruled out ruling
out Py − eAy/c. Therefore, the only quantities that commute are Py,Pz, and Pz − eAz/c (because Az = 0
so Pz − eAz/c = Pz).
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