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Topics Covered in Chapter

Wave Equation

Momentum Space

Charge conservation and Continuity
Potential Problems in 1D

Harmonic Oscillator



Past Problems

Not exactly (it's too easy!), but content shows up mostly in:

e Spherically symmetric bound state problems (in combination with chapter 4)
o August 2021 problem 4, August 2020 problem 1, Spring 2020 problem 4 part d

e Harmonic oscillators frequently show up in Fermi’s golden rule problems
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Bound states

4. Consider a particle of mass m in a three-dimensional potential
V(r)=—-pB0(r—a), pB>0.

(a) (10 pts) In terms of B and m, what is the minimum value of a for which one has a bound
state?

This gives a Schrodinger equation
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Bound states
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This is positive because, for a bound state, the energy is negative. This implies the wavefunctions are
exponentials. We can also tell that k£ is the same on both sides.
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Integrating this over the interval [a —e,a + €] (¢ — 0), we get the boundary condition
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Bound states

We also know that the wavefunction must be continuous across the boundary. Furthermore,

¥(0) =0
Y(r —00)=0

From these boundary conditions, we can derive
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Bound states

At r = a, the wavefunction and its slope give, respectively,
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Bound states

For the minimum number of states, & — 0 as we want the wavefunction to be as evenly spread
throughout the space as possible.
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Aug 2020 Problem 1

1. (10 pts) A particle of mass m interacts with a spherically symmetric attractive potential,

— _%+%, r<a
V(T)_{ 0, »>a

Circle the true statements below:

e Fixing a, and making Vj very small, but non-zero, there will always be at least one bound
state.

e Fixing V), and making a very small, but non-zero, there will always be at least one bound
state.

e Fixing a, as the magnitude of Vj increases, the number of bound states will increase.

e Fixing V,, as the magnitude of a increases, the number of bound states will increase.



August 2020 Problem 1: Solution

v(r)

Sketch of u(r), needs to turn over
before r=a for a bound state to exist.

The rate at which it turns over is proportional
to VO (for a barely bound state), so if “a” is
too small relative to VO, no bound state will
exit. Similarly, increasing the depth of the
well or it's width will increase the number of
bound states.

VO




Harmonic Oscillator Overlap

Fermi’s golden rule problems sometimes require calculating matrix elements such
as < 1|z|0 > where these are the ground and first excited states of the harmonic

oscillator. In these cases, you can avoid integrating by using z = 4/ 2rzw (a + a.T)
Then:
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