Chapter 3 — Homework Solutions

1. Using the equations of motion for the wave function, show that the density and current defined
by
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satisfies the continuity equation,
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The last two terms cancel. Thus,
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2. Consider a particle of charge e traveling in the electromagnetic potentials
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where A(r,t) is an arbitrary scalar function.

(a) What are the electromagnetic fields described by these potentials?
(b) Show that the wave function of the particle is given by
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where 9 solves the Schrodinger equation with A = 0.
(c¢) Let V(r,t) = e®(t) be a spatially uniform time varying potential. Show that
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is a solution if g is a solution with & = 0.

Solution:
a)
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b) We must show that ihd;) = He.

ihoi = “(BA)Y + ¢ M0 Hog,

—ihV —eA/c)? . =
( : /c) =iy 1 € (9,M),
m C

(—ihV — eA/c)e M)y = =M ) (_inTahy — eAfc — (e/c)V A)ih.

Hy =
The last two terms cancel because A = —VA. One can then see verify thoy = H.
c) Let

A(t) = c/oo dt" d(t'),
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From above,
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3. For a gauge transformation, described in Eq. (??), including the associated the phase change
to the wave function v, described in Eq. (77),

(a) Show that the charge density ey *1) is unchanged by the gauge transformation
(b) Show that the current
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is unchanged.

(c¢) Show that (x|H|v) is unchanged in a gauge transformation where A is independent of
time.

Solution:

a)
= e Ny, Pt = Y.
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Let A= Ay — VA,

W3 (—ihV — eAy/c) + ((ihV — eAo/c)wy)ho

X* _ Xoe—ieA/(hc)7

Wb = eieh )y
H =V(r) 4+ (—ihV — eAy/c + eV A/c)? /2m,
Hy = V(r) + (—ihV — eAy/)? /2m,
(—ihV — eAy/c + eVA /) = e M) (kY — eAy /)iy

Thus,

XHY = xe ") Hygpy
= xoHovo.



4. Find (or guess) the function A(7,¢) that corresponds to the gauge transformation in Eq. (77?)
responsible for re-expressing the vector potential in Eq. (??) to the form of Eq. (??), and
show that both forms give the same magnetic field.

Solution:
Rewriting the question: Find the function A(7,t) that corresponds to the gauge transformation,

_1OA(RY)

A1) = A1) + VA, O(71) = (7 ) — ——

responsible for re-expressing the vector potential in the form
A, =0, A, =0, Ay, = pB/2,

to the form

a) For the first form,

As = (1/2)Bp,

A, = —Aysing, A, = Aycosp, A, =0,
x
A, = (=1/2)Bp% = ~(1/2) By,
Ay

_ (1/2)3;;% = (1/2)Bz

Let A = (—1/2)Buxy,

A = A+ (1/2)V(Bzy),
A, =0, A, = Bxy.

b) For the first form
B, = 0,A, — 0,A, = 0,(Bz/2) — 0,(—By/2) = B.
For the second form

B, = 0,A, — 8,A, = 0,(Bx) = B. v (0.1)



5. The expression for the v, in Eq. (??) is only valid for non-relativistic velocities, where |E| <<
|B|. For a uniform magnetic field BZ, with no electric field, consider the form for the vector
potential in Eq. (??). Performing a relativistic boost (Lorentz transformation), but for
non-relativistic velocities, in the y direction by a velocity v,, what is the resulting zero'™®
component of the vector potential Ay? Equating this with the electric scalar potential, express
the strength of the resulting electric field in terms of v, and B.

Solution:
In lab frame

A’ =& = —FEz, AY = Bx.
Boosted

AY = ~® + v AY
=yz(—FE + v, B).
Choose v, = E/B to make electric field disappear. Thus, in this frame the motion is purely

circular. Whereas, in the lab frame the average velocity is v, = E/B, which matches our
previous result.



6. In this problem, we reconsider the problem of a charged particle in the presence of both an
electric and magnetic field, but do so in a different gauge. The electron is placed in a region
of constant external magnetic field B directed along the z axis and of constant electric field
E in the y direction.

(a) Choosing the vector potential to lie along the y axis and describe both the electric and
magnetic fields, show that the Hamiltonian may be written in the form,
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and find w, and vy in terms of E, B, e, m, k, and ¢, where hk, is the eigenvalue of P,.
Hint: Choose a gauge such that E = —(1/¢)d,A.
(b) Show that Schrédinger’s equation, ¢(0/0t)V = HV is satisfied by the form

\I/(Qf, Y, 2, t) _ e—ient/h+imvox/h+ikzz+ikyy¢n(l, — 20 — ’Uot) 7

where ¢,, refers to a harmonic-oscillator wave function characterized by the frequency w
and €, = (n + 1/2)hw + mvi /2.

Solution:
a) Choose the gauge

A, =Bz —cEt, A,=A+2=0.
This will give B = B2 and E = Ejj. The Hamiltonian is then
1
= {P?+ P2+ (P,— eBx/c+eEt)’}
m
1 2 2 2
= {Px + P + (py — eBx/c+ eEt) } ,

where we have assumed that the solution is an eigenstate of P, with eigenvalue p,. H is now
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b) Applying the Hamiltonian to the form for ¥ above,
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Next, look at iho, W,

Zhat\ll — Gn‘I’ + efient/)‘H»imvoz/thikzz+ikyyat¢n(x - 'Uot)
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The two expressions are identical. v



