\qquad

Physics 851 Exercise \#9-Monday, Nov. 1st

Consider a particle of mass M confined to a two-dimensional circle of radius \boldsymbol{R}. The particle moves in a periodic potential,

$$
V(\phi+2 \pi / N)=V(\phi)
$$

where N is an integer. Assuming the wave-function has the form,

$$
\psi(\phi)=e^{i m \phi}+B e^{-i m \phi}, \quad 0<\phi<2 \pi / N
$$

and that the eigenvalue of the rotation operator, $\mathcal{R}(2 \pi / N)$, were $e^{i \gamma}$, i.e.,

$$
\psi(\phi+2 \pi / N)=e^{i \gamma} \psi(\phi)
$$

In your homework you showed that \boldsymbol{m} could be found and that the allowed values of γ were $\boldsymbol{j} \boldsymbol{\alpha}$, where $\alpha=2 \pi / N$. You then considered a potential of the form,

$$
V(\phi)=\beta \sum_{j=1, N} \delta(\phi-2 \pi j / N)
$$

and found a transcendental equation for m,

$$
\begin{aligned}
& 0=p \sin (m \alpha)+2 m \cos (m \alpha)-2 m \cos (j \alpha) \\
& \gamma=j \alpha, \alpha=2 \pi / N \\
& p=2 M \beta R^{2} / \hbar^{2}
\end{aligned}
$$

Write a program (you can use any packages you wish, to solve for the lowest 4 values of \boldsymbol{m} as a function of γ. Plot \boldsymbol{m} (energy is $\hbar^{2} \boldsymbol{m}^{2} / \mathbf{2 M} \boldsymbol{R}^{2}$) as a function of γ for $-\pi \leq \gamma \leq \pi$. Assume $\boldsymbol{p} \boldsymbol{\alpha}=\mathbf{5 . 0}$ and make plots for $N=4$ and for $N=100$. Note that the function will be multi-valued because you will find the lowest four values of \boldsymbol{m} for each γ.

