SUBJECT EXAM

PHYSICS 851/852, SPRING 2001

1. (10 points) Consider a two-component system described by the spinor,

$$\psi(t) = \left(\begin{array}{c} \psi_1(t) \\ \psi_2(t) \end{array}\right)$$

The system evolves under the influence of a Hamiltonian,

$$H = H_0 + \hbar \omega \sigma_x.$$

If the system begins life in the state

$$\psi(t=0) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ i \end{pmatrix},$$

find $P_{\uparrow}(t)$, the probability of being in the state

$$\psi_{\uparrow} \equiv \left(\begin{array}{c} 1\\0 \end{array}\right)$$

2. A particle of mass m moves under the influence of a repulsive spherically symmetric potential,

$$V(r) = \begin{cases} V_0, & r < a \\ 0, & r > a \end{cases}$$

- (a) (10 points) Find the s-wave phase shift $\delta(E)$ for energies $E < V_0$.
- (b) (5 points) What is the cross section for scattering in the limit $E \to 0$.
- 3. (10 points) Express the state $|s = 1/2, \ell = 2, m_s = 1/2, m_\ell = 1\rangle$ as a linear combination of eigenstates of total angular momentum J and projection M.
- 4. (15 points) Two types (ted and alice) of non-relativistic spin-1/2 fermions have equal mass m and move in a **TWO-DIMENSIONAL** world. They can undergo a reaction $ted + \gamma \leftrightarrow alice + \gamma'$, where γ refers to a photon. A macroscopic number are placed in a large box of area A that conserves the net number $N = N_{ted} + N_{alice}$, but allows photons to escape. The particles feel different potentials within the box,

$$V_{ted}(x, y) = V_{ted}$$
$$V_{alice}(x, y) = 0.$$

After equilibrating at zero temperature, find N_{ted} and N_{alice} in terms of N, A, m and V_{ted} . (Assume V_{ted} is much less than the Fermi energy.)

5. A bob particle of mass m is in the first excited state of a **ONE-DIMENSIONAL** harmonic oscillator characterized by frequency ω . It can decay to the ground state via the emission of a carol particle which is massless and spinless. The potential responsible for the decay is

$$V = g \int dx \ \Psi^{\dagger}(x) \Phi(x) \Psi(x),$$

where Ψ and Φ are field operators for bob and carol particles respectively,

$$\Psi(x) = \frac{1}{\sqrt{L}} \sum_{k} b_k e^{-ikx} = \sum_{n} \phi_n(x) b_n$$

$$\Phi(x) = \frac{1}{\sqrt{L}} \sum_{k} \frac{1}{\sqrt{kc}} \left(c_k^{\dagger} e^{ikx} + c_k e^{-ikx} \right),$$

where b_k^{\dagger} and c_k^{\dagger} create bobs and carols with momentum $\hbar k$, and b_n^{\dagger} would create bobs into any state n which is part of an orthonormal basis described by wave functions $\phi_n(x)$.

- (a) (5 points) What is the dimension of g?
- (b) (10 points) Calculate $\langle k, 0|V|1\rangle$, the matrix element for decay of a bob from the first excited state into the ground state via emission of a carol with momentum k.
- (c) (10 points) In terms of \hbar , m, ω and $\mathcal{M} \equiv \sqrt{L}\langle k, 0|V|1\rangle$, calculate the lifetime of the first excited state.

Potentially useful information:

$$\psi_0(x) = \frac{1}{\pi^{1/4} a^{1/2}} e^{-x^2/(2a^2)}, \quad a^2 = \frac{\hbar}{m\omega}$$
 (1)

$$\psi_1(x) = x \frac{\sqrt{2}}{a} \psi_0(x) \tag{2}$$

$$E = \hbar kc$$
, for a massless particle. (3)

- 6. (15 points) Consider eigenstates of the hydrogen atom whose angular wave functions are described by ℓ and m_{ℓ} . All other information about the eigenstate (e.g. spin and radial wave functions) are referred to by α and β . For each of the matrix elements below,
 - (a) $\langle \alpha, \ell = 2, m_{\ell} = 0 | r^2 | \beta, \ell = 0, m_{\ell} = 0 \rangle$
 - (b) $\langle \alpha, \ell = 4, m_{\ell} = 0 | (x + iy)^2 | \beta, \ell = 2, m_{\ell} = 0 \rangle$
 - (c) $\langle \alpha, \ell = 2, m_{\ell} = 2 | z^2 | \beta, \ell = 0, m_{\ell} = 0 \rangle$
 - (d) $\langle \alpha, \ell = 3, m_{\ell} = 3 | z^2 | \beta, \ell = 3, m_{\ell} = 3 \rangle$
 - (e) $\langle \alpha, \ell = 3, m_{\ell} = 2 | x | \beta, \ell = 3, m_{\ell} = 1 \rangle$,

choose one of the following statements.

- A. Might be non-zero.
- B. Must be zero due to parity.
- C. Must be zero due to time-reversal.
- D. Must be zero due angular momentum conservation, a.k.a. the Wigner Eckart theorem.
- E. Must be zero due to conservation of electric charge.
- 7. Consider the quantum state

$$|\eta\rangle \equiv e^{-\eta^*\eta/2}e^{\eta a^{\dagger}}|0\rangle.$$

- (a) (5 points) Calculate $\langle 0|a|\eta \rangle$.
- (b) (5 points) Calculate $\langle \eta | (a^{\dagger})^3 a^2 | \eta \rangle$

(You can use the fact that $\langle \eta | \eta \rangle = 1$.