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1. (10 pts) A particle of mass m interacts with a spherically symmetric attractive potential,

V (r) =

{
−V0 + V0r

a
, r < a

0, r > a

Circle the true statements below:

• Fixing a, and making V0 very small, but non-zero, there will always be at least one bound
state.

• Fixing V0, and making a very small, but non-zero, there will always be at least one bound
state.

• Fixing a, as the magnitude of V0 increases, the number of bound states will increase.

• Fixing V0, as the magnitude of a increases, the number of bound states will increase.
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2. A system ofN spinless particles are self-bound due to an attractive radially symmetric interaction.
States are labeled |α,L,M〉, where L and M reference the total angular momentum and α
accounts for all other quantum labels.

(a) (10 pts) For the matrix elements listed below, circle the NON-ZERO elements:
(J,R, P are current, position and momentum operators)

• 〈α′, L′ = 2,M ′ = 1|P 2
x + P 2

y |α,L = 4,M = 3〉
• 〈α′, L′ = 2,M ′ = 1|PxPy|α,L = 4,M = 1〉
• 〈α′, L′ = 2,M ′ = 1|εijkJiRjPk|α,L = 2,M = 1〉
• 〈α′, L′ = 2,M ′ = 1|Px|α,L = 3,M = 1〉

(b) (10 pts) With great effort, you calculated the matrix element

M = 〈α′, L′ = 2,M ′ = 0|P 2
x + P 2

y − 2P 2
z |α,L = 4,M = 0〉

by performing a long and difficult integral. If you were to use the Wigner Eckart theorem,
circle the matrix elements below you could express in terms of M and Clebsch-Gordan
coefficients without having to perform a new integral.

• 〈α′, L′ = 2,M ′ = 2|P 2
x + P 2

y − 2P 2
z |α,L = 4,M = 2〉

• 〈α′, L′ = 2,M ′ = 2|P 2
x + P 2

y |α,L = 4,M = 2〉
• 〈α′, L′ = 2,M ′ = 0|PxPy|α,L = 4,M = 2〉
• 〈α′, L′ = 2,M ′ = 0|P 2

x + P 2
y − 2P 2

z |α,L = 2,M = 0〉
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3. (20 pts) A long array of point charges are positioned in a line along the z axis, with a distance a
separating each charge. A beam with momentum p is incident on the charges along the z axis.
The scattering can be considered as a perturbative process. In order to measure the distance a,
you measure the directions at which the differential cross section is the largest. In terms of a and
p, list the angles for which all the scattering is strongest, i.e. where all the charges contribute
coherently.
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4. Consider a TWO-DIMENSIONAL world with protons and neutrons of mass M and massless
electrons and neutrinos. Neutrinos and anti-neutrinos can readily exit or enter the system. The
system is confined to a large box of volume Ω, has zero net electric charge, and has a baryon
density (number of baryons per area) of ρB. The protons and neutrons move non-relativistically.
The interactions,

p+ e↔ n+ ν, n↔ p+ e+ ν̄,

take place until the energy is minimized.

For each question below, give your answer in terms of ρB, M , ~, Ω, and the Fermi wave numbers
kp, ke and kf for protons, electrons and neutrons respectively.

(a) (15 pts) Write three equations expressing the fact that the system is electrically neutral, has
fixed net areal baryon density ρB, and has minimum energy.

(b) (5 pts) Solve for kp, kn and ke.
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5. (30 pts) Consider a ONE-DIMENSIONAL world, where a non-relativistic particle of mass M
is in the ground state of a harmonic oscillator characterized by frequency ω0. The harmonic
oscillator is in large box of length L which is populated by a bath of massless particles. The
probability that any given state in the box is occupied is f(k), where k is the wave number of
the massless particle. The harmonic oscillator can be excited to the first excited state via the
weak coupling,

V = g

∫
dx Ψ†(x)xΨ(x)Φ(x),

where Ψ is the field operator for the massive particle and [Ψ(x, t),Ψ†(x′, t)] = δ(x− x′), and
Φ is the field operator for the massless particle,

Φ(x, t) =
∑
k

1
√

2EkL

[
a(k)e−iωt+ikx + a†(k)eiωt−ikx

]
,

[a(k), a†(k′)] = δkk′.

Using Fermi’s golden rule find the rate at which the massive particle is excited to the first excited
state from the ground state. Your answer should be in terms of m, ω0, g and f(k).
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