FINAL EXAM

PHYSICS 851, FALL 1998

1. (15 pt.s) Consider a spin 1/2 system. The projection operator P_z projects the component of the wave function that has positive spin along the z axis.

$$\langle \eta | P_z | \eta \rangle = |\langle z, \uparrow | \eta \rangle|^2$$

- (a) Express P_z as a matrix in the basis where $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ denotes a state with positive spin along the z axis.
- (b) Write down the density matrix for a state that is an incoherent mixture of 50% positive spin along the y axis and 50% negative spin along the y axis.
- (c) If the Hamiltonian is defined as:

$$\mathcal{H} = \alpha + \beta \sigma_x$$

Calculate the expectation of \mathcal{H} for the state described in b.

2. (15 pt.s) Consider two flavors of neutrinos, the μ neutrino and the τ neutrino. Suppose that the Hamiltonian can be written as a free term plus a term that mixes the μ and τ neutrinos, which is proportional to α .

$$\mathcal{H} = \begin{pmatrix} m_{\mu}c^2 & 0\\ 0 & m_{\tau}c^2 \end{pmatrix} + \alpha \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

If a neutrino starts as a μ neutrino, what is the probability, as a function of time, of being a τ neutrino?

3. (15 pt.s) A particle of mass m and charge e interacts with the vector potential

$$A_x = 0$$

$$A_y = Bx$$

$$A_z = 0$$

- (a) What is the magnetic field generated by the vector potential?
- (b) Find the ground state energy.
- 4. (15 pt.s) A particle of mass m is placed in a one-dimensional harmonic oscillator of characteristic frequency ω . The state is described by

$$|\psi_0\rangle = \frac{1}{\sqrt{2}}\left\{|n=0\rangle + |n=1\rangle\right\}$$

at a time t = 0. Find the expectation of the operator X as a function of time.

5. (25 pt.s) A spherically symmetric potential has the form,

$$V(r) = \frac{\hbar^2}{2m} \beta \delta(r - a)$$

- (a) As a function of the asymptotic momentum p, find the s-wave phase shift in terms of a, β and the particle's mass m. Assume $\beta > 0$.
- (b) What is the cross section in the limit of zero relative momentum?
- (c) Now, assume $\beta < 0$. Find the minimum magnitude $|\beta|$ necessary for the creation of a bound state. Express your answer in terms of m and a. Hint: Solve the boundary conditions assuming the binding energy is zero.
- 6. (15 pt.s) This problem is set in one dimension. An electron is in the ground state of an attractive potential described by a delta function at x = 0. The ground state wave function is:

$$\psi(x) = \sqrt{Q} \exp{-Q|x|}$$

A uniform electric field is applied which varies in time as $\mathcal{E}\cos\omega t$. Assume that $\hbar\omega$ is greater than the binding energy of the potential.

- (a) What is the density of states dN/dE of spin-up electrons in the continuum.
- (b) Estimate the ionization rate in terms of Q, \mathcal{E} and the mass of the particle m. You may leave the matrix element in the form of an integral.
- 7. (15 pt.s) Express the state $|j_1 = 1, j_2 = 1/2, m_1 = 0, m_2 = 1/2\rangle$ as a linear combination of eigenstates of total angular momentum, J and projection, M.