Energy density functional methods for nuclear structure and neutrinoless double beta decay

Tomás R. Rodríguez

NAVI/JINA Collaboration-Meeting 2012

MSU November 2012

Bundesministerium für Bildung und Forschung

- I. Introduction
- 2. Nuclear structure
- 3. Neutrinoless double beta decay
- 4. Summary and outlook

Description of the nuclear structure valid for the whole nuclear chart with a single effective interaction.

Description of the nuclear structure valid for the whole nuclear chart with a single effective interaction.

- Skyrme functionals
- Gogny functionals
- Relativistic functionals

• Effective nucleon-nucleon interaction:

Gogny force (DIS-DIM) that is able to describe properly many phenomena along the whole nuclear chart. 2

$$V(1,2) = \sum_{i=1}^{\infty} e^{-(\vec{r}_1 - \vec{r}_2)^2 / \mu_i^2} (W_i + B_i P^{\sigma} - H_i P^{\tau} - M_i P^{\sigma} P^{\tau})$$

+ $iW_0(\sigma_1 + \sigma_2)\vec{k} \times \delta(\vec{r}_1 - \vec{r}_2)\vec{k} + t_3(1 + x_0 P^{\sigma})\delta(\vec{r}_1 - \vec{r}_2)\rho^{\alpha} ((\vec{r}_1 + \vec{r}_2)/2)$
+ $V_{\text{Coulomb}}(\vec{r}_1, \vec{r}_2)$

• Effective nucleon-nucleon interaction:

Gogny force (DIS-DIM) that is able to describe properly many phenomena along the whole nuclear chart. $V(1,2) = \sum_{\alpha} \frac{-(\vec{r}_1 - \vec{r}_2)^2 / \mu_i^2}{(W_1 + B_1 P^{\sigma} - H_2 P^{\tau} - M_2 P^{\sigma} P^{\tau})}$

$$V(1,2) = \sum_{i=1}^{e^{-(\vec{r}_1 - \vec{r}_2)^2/\mu_i^2}} \frac{(W_i + B_i P^{\sigma} - H_i P^{\tau} - M_i P^{\sigma} P^{\tau})}{(W_i + iW_0(\sigma_1 + \sigma_2)\vec{k} \times \delta(\vec{r}_1 - \vec{r}_2)\vec{k} + t_3(1 + x_0 P^{\sigma})\delta(\vec{r}_1 - \vec{r}_2)\rho^{\alpha}((\vec{r}_1 + \vec{r}_2)/2)} + V_{\text{Coulomb}}(\vec{r}_1, \vec{r}_2)$$

• Effective nucleon-nucleon interaction:

Gogny force (DIS-DIM) that is able to describe properly many phenomena along the whole nuclear chart. $V(1,2) = \sum_{i=1}^{2} e^{-(\vec{r}_{1}-\vec{r}_{2})^{2}/\mu_{i}^{2}} (W_{i}+B_{i}P^{\sigma}-H_{i}P^{\tau}-M_{i}P^{\sigma}P^{\tau}) \quad \text{central term}$ $\stackrel{\text{spin-orbit}}{\text{term}} + iW_{0}(\sigma_{1}+\sigma_{2})\vec{k} \times \delta(\vec{r}_{1}-\vec{r}_{2})\vec{k} + t_{3}(1+x_{0}P^{\sigma})\delta(\vec{r}_{1}-\vec{r}_{2})\rho^{\alpha} ((\vec{r}_{1}+\vec{r}_{2})/2) + V_{\text{Coulomb}}(\vec{r}_{1},\vec{r}_{2})$

Theoretical framework
I. Introduction 2. Nuclear structure 3. 0vßß decay 4. Summary and outlook
Effective nucleon-nucleon interaction:
Gogny force (DIS-DIM) that is able to describe properly many phenomena along the whole nuclear chart.

$$V(1,2) = \sum_{i=1}^{2} e^{-(\vec{r}_1 - \vec{r}_2)^2/\mu_i^2} (W_i + B_i P^{\sigma} - H_i P^{\tau} - M_i P^{\sigma} P^{\tau}) \text{ central term}$$

$$spin-orbit + iW_0(\sigma_1 + \sigma_2)\vec{k} \times \delta(\vec{r}_1 - \vec{r}_2)\vec{k} + t_3(1 + x_0 P^{\sigma})\delta(\vec{r}_1 - \vec{r}_2)\rho^{\alpha}((\vec{r}_1 + \vec{r}_2)/2)$$

 $\iota_{3}(\mathbf{1}$

72)ħ

 r_{01}

density-dependent term

P(2)

 $((\prime 1$

2)/4/

 $+02)\kappa \times 0(11)$

 $+V_{\text{Coulomb}}(\vec{r_1},\vec{r_2})$

term

First step: Particle Number Projection (before the variation) of HFB-type wave functions.

First step: Particle Number Projection (before the variation) of HFB-type wave functions.

Second step: Simultaneous **Particle Number and Angular Momentum Projection** (after the variation).

First step: Particle Number Projection (before the variation) of HFB-type wave functions.

Second step: Simultaneous **Particle Number and Angular Momentum Projection** (after the variation).

Third step: Configuration mixing within the framework of the **Generator Coordinate Method (GCM)**.

MSU Seminar, Nov 2012 Energy density functional methods for nuclear structure...

Tomás R. Rodríguez

Configuration (shape) mixing τεснызсна I. Introduction 2. Nuclear structure 3. 0vββ decay 4. Summary and outlook

Axial calculations ²⁴Mg

Configuration mixing within the framework of the **Generator Coordinate Method (GCM)**.

Hill-Wheeler-Griffin equations

- Energy spectrum
- Observables (mass, radius, B(E2), etc.)
- "Collective w.f."

I. Introduction

2. Nuclear structure

3.0vββ decay

4. Summary and outlook

ECHNISCHE

UNIVERSITAT DARMSTADT

Triaxial calculations ²⁴Mg

γ**=**240

0

γ=300

Tomás R. Rodríguez

I. Introduction

2. Nuclear structure

3.0vββ decay

4. Summary and outlook

Triaxial calculations ²⁴Mg

 $\delta E^{N,Z} \left[\bar{\Phi}(\beta,\gamma) \right] \Big|_{\bar{\Phi}=\Phi} = 0 \qquad E^{N,Z}[\Phi] = \frac{\langle \Phi | \hat{H}_{2b} \hat{P}^N \hat{P}^Z | \Phi \rangle}{\langle \Phi | \hat{P}^N \hat{P}^Z | \Phi \rangle} + \varepsilon_{DD}^{N,Z}(\Phi) - \lambda_{q_{20}} \langle \Phi | \hat{Q}_{20} | \Phi \rangle - \lambda_{q_{22}} \langle \Phi | \hat{Q}_{22} | \Phi \rangle$

• Symmetry corresponding to the different orientation of the axes

• All configurations are included between $\gamma \in [0^{\circ}, 60^{\circ}]$

I. Introduction

2. Nuclear structure

3.0vββ decay

4. Summary and outlook

Triaxial calculations ²⁴Mg

 $\delta E^{N,Z} \left[\bar{\Phi}(\beta,\gamma) \right] \Big|_{\bar{\Phi}=\Phi} = 0 \qquad E^{N,Z}[\Phi] = \frac{\langle \Phi | \hat{H}_{2b} \hat{P}^N \hat{P}^Z | \Phi \rangle}{\langle \Phi | \hat{P}^N \hat{P}^Z | \Phi \rangle} + \varepsilon_{DD}^{N,Z}(\Phi) - \lambda_{q_{20}} \langle \Phi | \hat{Q}_{20} | \Phi \rangle - \lambda_{q_{22}} \langle \Phi | \hat{Q}_{22} | \Phi \rangle$

• Symmetry corresponding to the different orientation of the axes

• All configurations are included between $\gamma \in [0^{\circ}, 60^{\circ}]$

I. Introduction

2. Nuclear structure

3.0vββ decay

4. Summary and outlook

Triaxial calculations ²⁴Mg

Particle number and angular momentum projection

TECHNISCHE UNIVERSITÄT DARMSTADT

I. Introduction

2. Nuclear structure

3.0vββ decay

4. Summary and outlook

Triaxial calculations ²⁴Mg

K

$$\begin{split} |IMK;NZ;\beta\gamma\rangle &= \frac{2I+1}{8\pi^2} \int \mathcal{D}_{MK}^{I*}(\Omega)\hat{R}(\Omega)\hat{P}^N\hat{P}^Z |\Phi(\beta,\gamma)\rangle d\theta \\ |IM;NZ;\beta\gamma\rangle &= \sum g_K^{IM;NZ;\beta\gamma} |IMK;NZ;\beta\gamma\rangle \end{split}$$

- Minimum displaced to triaxial shapes.
- Projection onto odd I angular momentum
- Softening of PES with increasing I.

- Difference between triaxial minimum and axial saddle point of $\sim 0.7 \text{ MeV} (0^+)$

Configuration (shape) mixing UNIVERSITÄT DARMSTADT 3. $0\nu\beta\beta$ decay I. Introduction 2. Nuclear structure 4. Summary and outlook **Triaxial** calculations ²⁴Mg 0.02 0.02 0.02 n 0.04 0.06 0 0.04 0.06 0 0.04 0.06 *I*=5⁺₁ *I*=6⁺₁ *I*=6⁺₃ ج.7 د.۲ 2. Configuration mixing within the framework of the \30^γ .30^γ 30 0_{.8} م.0 Generator Coordinate Method (GCM). K 0.0 0.4 0.1 and deformation mixing 0 1.2 1.2 0.8 0.4 0.8 0.4 0.8 1.2 0 0.4 0 0 1=4⁺3 ¹.2 $l=4^{+}_{2}$ *I*=4⁺₁ د.۲ د.۲

$$|IM; NZ\sigma\rangle = \sum_{K\beta\gamma} f_{K\beta\gamma}^{I;NZ,\sigma} |IMK; NZ; \beta\gamma\rangle$$

$$\sum_{K'\beta'\gamma'} \left(\mathcal{H}_{K\beta\gamma K'\beta'\gamma'}^{I;NZ} - E^{I;NZ;\sigma} \mathcal{N}_{K\beta\gamma K'\beta'\gamma'}^{I;NZ} \right) f_{K'\beta'\gamma'}^{I;NZ;\sigma} = 0$$

- Axial ground state rotational band

- Second band associated to a gamma band

-Third band with shape mixing

Triaxial calculations ²⁴Mg

Configuration mixing within the framework of the **Generator Coordinate Method (GCM)**. *K* and deformation mixing

MSU Seminar, Nov 2012 Energy density functional methods for nuclear structure...

Tomás R. Rodríguez

Shell closures 3.0vββ decay 4. Summary and outlook

• Magic numbers in the valley of the stability

- \checkmark Very stable (high binding energies per nucleon and separation energies).
- \checkmark Spherical shape.
- \checkmark High excitation energy of the first 2⁺ state.
- \checkmark Small reduced transition probabilities between the first 2⁺ and ground states.

 \checkmark Magic numbers (2, 8, 20, 28, 50, 82, 126) correspond to the shell closures of a harmonic oscillator+spin-orbit single particle potential.

• Magic numbers in exotic nuclei

- \checkmark Degradation of the traditional shell closures: ³²Mg (N=20), ⁴²Si (N=28)
- ✓ Appearance of new shell closures: N=32
- ✓ Key relevance in r-process nucleosynthesis (waiting points)
- \checkmark Shell quenching in N=82 for Cadmium isotopes?

The tendency of the **experimental data** for the excitation energies $E(2^+)$ and transition probabilities $B(E2,0^+ \rightarrow 2^+)$ shows the presence of sub-shell closures.

The tendency of the **experimental data** for the excitation energies $E(2^+)$ and transition probabilities $B(E2,0^+ \rightarrow 2^+)$ shows the presence of sub-shell closures.

\checkmark AXIAL calculations

 \checkmark Good agreement in the binding energies and two neutron separation energies.

T.R.R and J.L. Egido, Phys. Rev. Lett. 99, 06201 (2007)

\checkmark AXIAL calculations

 \checkmark Good agreement in the binding energies and two neutron separation energies.

✓ Excellent qualitative agreement for the excitation energies $E(2^+)$

 \checkmark N=32 is a good sub-shell closure while N=34 is not.

T.R.R and J.L. Egido, Phys. Rev. Lett. 99, 06201 (2007)

\checkmark AXIAL calculations

 \checkmark Good agreement in the binding energies and two neutron separation energies.

✓ Excellent qualitative agreement for the excitation energies $E(2^+)$

 \checkmark N=32 is a good sub-shell closure while N=34 is not.

T.R.R and J.L. Egido, Phys. Rev. Lett. 99, 06201 (2007)

\checkmark AXIAL calculations

 \checkmark Good agreement in the binding energies and two neutron separation energies.

✓ Excellent qualitative agreement for the excitation energies $E(2^+)$

✓ N=32 is a good sub-shell closure while N=34 is not.

 \checkmark Staggering of the B(E2) in Ti isotopes is reproduced without any effective charges

 \checkmark Qualitative agreement in the B(E2) especially in the lightest isotopes.

T.R.R and J.L. Egido, Phys. Rev. Lett. 99, 06201 (2007)

✓ Shape evolves from
 N=50 to N=82 magic
 number through prolate
 axially symmetric
 structures

✓ Highest deformation is found in mid-shell nuclei (β~0.2)

✓ Rest of calculations
 will assume axial
 symmetry

Shell closures

3.0vββ decay

4. Summary and outlook

• Systematics of the E(2) and B(E2) in Cadmium isotopes

✓ AXIAL calculations

 \checkmark Good qualitative agreement for the $E(2^+)$ excitation energies and B(E2) transition probabilities from shell to shell

 \checkmark N=50-58 parabolic behavior (filling g_{7/2} shell)

 \checkmark N=60-70 flat behavior (filling d_{5/2}, d_{3/2}, s_{1/2} shells)

✓ Anomalous behavior of $E(2^+)$ for ¹²⁸Cd has been is well reproduced

T.R.R, J.L. Egido, A. Jungclaus, Phys. Lett. B 668, 410 (2008)

Shell closures

3.0vββ decay

4. Summary and outlook

• Systematics of the E(2) and B(E2) in Cadmium isotopes

 \checkmark AXIAL calculations

 \checkmark Good qualitative agreement for the $E(2^+)$ excitation energies and B(E2) transition probabilities from shell to shell

 \checkmark N=50-58 parabolic behavior (filling g_{7/2} shell)

 \checkmark N=60-70 flat behavior (filling d_{5/2}, d_{3/2}, s_{1/2} shells)

✓ Anomalous behavior of $E(2^+)$ for ¹²⁸Cd has been is well reproduced

T.R.R, J.L. Egido, A. Jungclaus, Phys. Lett. B 668, 410 (2008)

I. Introduction

2. Nuclear structure

3. $0\nu\beta\beta$ decay

4. Summary and outlook

Triaxial calculations in rp-process waiting point ⁸⁰Zr

- Five minima are closer in energy whenever the rotational invariance is restored.
- Absolute minima corresponds to deformed configuration β ~0.55
- Barriers between the minima are less than 1 MeV. Mixing?

T.R.R and J.L. Egido, Phys. Lett. B 705, 255 (2011).

TECHNISCHE UNIVERSITÄT DARMSTADT

I. Introduction

2. Nuclear structure

3.0 $\nu\beta\beta$ decay

4. Summary and outlook

Triaxial calculations in rp-process waiting point ⁸⁰Zr

- Five minima are closer in energy whenever the rotational invariance is restored.
- Absolute minima corresponds to deformed configuration β ~0.55
- Barriers between the minima are less than 1 MeV. Mixing?

T.R.R and J.L. Egido, Phys. Lett. B 705, 255 (2011).

TECHNISCHE UNIVERSITAT DARMSTADT

I. Introduction

2. Nuclear structure

3. $0\nu\beta\beta$ decay

4. Summary and outlook

Triaxial calculations in rp-process waiting point ⁸⁰Zr

T.R.R and J.L. Egido, Phys. Lett. B 705, 255 (2011).

Tomás R. Rodríguez

TECHNISCHE UNIVERSITÄT DARMSTADT

I. Introduction

2. Nuclear structure

3.0vββ decay

4. Summary and outlook

Triaxial calculations in rp-process waiting point ⁸⁰Zr

TECHNISCHE UNIVERSITÄT DARMSTADT

I. Introduction

2. Nuclear structure

3.0vββ decay

4. Summary and outlook

Triaxial calculations ⁴⁴S

 \checkmark N=28 shell closure is already broken at the PN-VAP level

✓ Very flat surface in the gamma direction: Shape mixing rather than shape coexistence

✓ Oblate shapes are a bit lower in energy for I=0 and the contrary for I=4

T.R.R and J.L. Egido, PRC 84, 051307 (2011)

MSU Seminar, Nov 2012

Energy density functional methods for nuclear structure...

Tomás R. Rodríguez

TECHNISCHE UNIVERSITÄT DARMSTADT

I. Introduction

2. Nuclear structure

 $3.0\nu\beta\beta$ decay

4. Summary and outlook

Triaxial calculations ⁴⁴S

T.R.R and J.L. Egido, PRC 84, 051307 (2011)

TECHNISCHE UNIVERSITÄT DARMSTADT

I. Introduction

2. Nuclear structure

3.0vββ decay

4. Summary and outlook

✓ Deformed ground state with triaxial shape mixing. Weakening of the N=28 magic number.

 \checkmark Prolate first 0⁺ excited state.

 \checkmark There is not a clear signature of rotational structures except for the quasi-gamma band.

 \checkmark We find shape-mixing rather shape coexistence.

T.R.R and J.L. Egido, PRC 84, 051307 (2011)

Process mediated by the weak interaction which occurs in those even-even nuclei where the single beta decay is energetically forbidden.

Process mediated by the weak interaction which occurs in those even-even nuclei where

MSU Seminar, Nov 2012

Energy density functional methods for nuclear structure...

Tomás R. Rodríguez

Half-life neutrinoless double beta decay (Doi et al (1985))

$$\left(T_{1/2}^{0\nu\beta\beta}(0^+ \to 0^+)\right)_{\text{light-neutrino exchange mechanism}}^{-1} = G_{01} \left|M^{0\nu\beta\beta}\right|^2 \left(\frac{\langle m_\nu\rangle}{m_e}\right)^2$$

• Kinematic phase space factor:

$$G_{01} = \frac{(Gg_A(0))^4 m_e^4}{64\pi^5 \ln 2} \int F_0(Z,\varepsilon_1) F_0(Z,\varepsilon_2)$$

$$\times p_1 p_2 \delta(\varepsilon_1 + \varepsilon_2 - E_f - E_i) d\varepsilon_1 d\varepsilon_2 d(\hat{\vec{p_1}} \cdot \hat{\vec{p_1}})$$

• Effective neutrino mass:

$$\langle m_{\nu} \rangle = \sum_{j} U_{ej}^2 m_j$$

• Nuclear Matrix Element (NME):

Energy density functional methods for nuclear structure...

$$M^{0\nu\beta\beta} = -\left(\frac{g_V(0)}{g_A(0)}\right)^2 M_F^{0\nu\beta\beta} + M_{GT}^{0\nu\beta\beta} - M_T^{0\nu\beta\beta}$$

• Each term can be written as the expectation value of a transition operator acting on the initial al final states:

$$M_{\xi}^{0\nu\beta\beta} = \langle 0_f^+ | \hat{O}_{\xi}^{0\nu\beta\beta} | 0_i^+ \rangle$$

- Nuclear structure methods for calculating these NME:
 - Quasiparticle Random Phase Approximation in different versions: QRPA, RQRPA, SRQRPA. (Tübingen group, Jyüvaskylä group)
 - Interacting Shell Model -ISM- (Strasbourg-Madrid collaboration, Michigan)
 - Interacting Boson Model -IBM- (Yale group)
 - Projected Hartree-Fock-Bogoliubov -PHFB- (Lucknow-UNAM group)
 - Energy Density Functional

$$M^{0\nu\beta\beta} = -\left(\frac{g_V(0)}{g_A(0)}\right)^2 M_F^{0\nu\beta\beta} + M_{GT}^{0\nu\beta\beta} - M_T^{0\nu\beta\beta}$$

• Each term can be written as the expectation value of a transition operator acting on the initial al final states:

$$M_{\xi}^{0\nu\beta\beta} = \langle 0_f^+ | \hat{O}_{\xi}^{0\nu\beta\beta} | 0_i^+ \rangle$$

• Nuclear structure methods for calculating these NME:

Different ways to deal with:

- Finding the best initial and final ground states.

- Handling the transition operator (inclusion of most relevant terms, corrections, approximations, etc.).

Some remarks about these methods:

- Calculations with limited single particle bases.
- Interactions fitted to the specific region (ISM) or to each nucleus individually (rest).
- Difficulties to include collective degrees of freedom.
- Problems with particle number conservation.

- GT strength greater than Fermi.

- Similar deformation between mother and granddaughter is favored by the transition operators

- Maxima are found close to sphericity although some other local maxima are found

MSU Seminar, Nov 2012

Energy density functional methods for nuclear structure...

Tomás R. Rodríguez

- GT strength greater than Fermi.
- Similar deformation between mother and granddaughter is favored by the transition operators
- Maxima are found close to sphericity although some other local maxima are found

- Final result depends on the distribution of probability of the corresponding initial and final collective states within this plot

- GT strength greater than Fermi.
- Similar deformation between mother and granddaughter is favored by the transition operators
- Maxima are found close to sphericity although some other local maxima are found

- Final result depends on the distribution of probability of the corresponding initial and final collective states within this plot

- GT strength greater than Fermi.
- Similar deformation between mother and granddaughter is favored by the transition operators
- Maxima are found close to sphericity although some other local maxima are found

Energy density functional methods for nuclear structure...

Tomás R. Rodríguez

- GT strength greater than Fermi.
- Similar deformation between mother and granddaughter is favored by the transition operators
- Maxima are found close to sphericity although some other local maxima are found

- Final result depends on the distribution of probability of the corresponding initial and final collective states within this plot

- GT strength greater than Fermi.
- Similar deformation between mother and granddaughter is favored by the transition operators
- Maxima are found close to sphericity although some other local maxima are found

- Final result depends on the distribution of probability of the corresponding initial and final collective states within this plot

Noticeable difference in the NME if only intrinsic spherical configurations are considered without configuration mixing.

Tomás R. Rodríguez

I. Introduction

2. Nuclear structure

3. 0νββ decay

4. Summary and outlook

Gogny DIS parametrization

Α	48	76	82	96	100	116	124	128	130	136	150	152	164	180
M ⁰∨	2.37	4.60	4.22	5.65	5.08	4.72	4.81	4.11	5.13	4.20	1.71	1.07	0.64	0.58
7 _{1/2} (у)	28.5 x10 ²³	76.9 x10 ²³	20.8 x10 ²³	5.48 x10 ²³	8.64 x10 ²³	9.24 x10 ²³	16.2 x10 ²³	343.1 x10 ²³	8.84 x10 ²³	12.7 x10 ²³	16.5 x10 ²³	4.2 x10 ³¹	1.3 x10 ³⁶	1.6 x10 ³⁴

Gogny DIM parametrization

Α	48	76	82	96	100	116	124	128	130	136	150	152	164	180	
M ⁰∨	2.43	4.64	4.28	5.70	5.19	4.83	4.71	3.98	5.07	4.29	1.36	0.89	0.50	0.38	
7 _{1/2} (у)	27.1 x10 ²³	75.6 x10 ²³	20.2 x10 ²³	5.38 x10 ²³	8.28 x10 ²³	8.82 x10 ²³	16.9 x10 ²³	365.8 x10 ²³	9.05 x10 ²³	12.2 x10 ²³	26.1 x10 ²³	6.2 x10 ³¹	2.1 x10 ³⁶	3.8 x10 ³⁴	
					double beta decay				double electron captu						

MSU Seminar, Nov 2012 Energy density functional methods for nuclear structure...

Tomás R. Rodríguez

- Higher values than the ones predicted by ISM calculations (larger valence space, lower seniority components).

- For A=76, 82, 128, 150 we predict smaller values than the ones given by QRPA and/or IBM while for A=96, 100, 116, 124, 130, 136 larger values are obtained.

- Consistent results with the rest of the models. Notice that we are using the same interaction for all the nuclei.

- Further studies are needed to understand what is missing in the different models.

• Energy density functional methods provide a reliable description of nuclear structure observables and NMEs in lepton number violating processes.

• Other degrees of freedom should be also explored (pairing vibrations, octupole deformations, triaxiality, explicit quasiparticle excitations...)

• Need of energy density functionals adjusted to beyond mean field results.

• Description of odd nuclei at the same level.

Acknowledgments

G. Martínez-Pinedo (TU-Darmstadt)

- K. Langanke (GSI-Darmstadt)
- J. L. Egido (UAM-Madrid)
- K. Blaum (U-Heidelberg)
- C. Smorra (U-Heidelberg)