Relativistic many-body models for nuclear structure and astrophysics

Elena Litvinova

National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, USA

> In collaboration with P. Ring (Munich), V. Tselyaev (St. Petersburg) T. Marketin (Darmstadt)

NAVI/JINA Collaboration meeting, 2012

A consistent microscopic description

- Degrees of freedom ••• Separation of the scales relevant for a description of nuclear dynamics **Degrees of Freedom** at ~1-50 MeV excitation energies: single-particle & collective (vibrational, rotational); coupling: NO complete separation of the scales! Symmetries -> Lagrangian ->Working basis: mean field, quarks, gluo Symmetries -> Lagrangian constituent quarks energy density functional theory (present work - CDFT) barvons, mesons Beyond static approximation: * Physics of Nuclei energy-dependent nucleonic self-energy: particle-vibration coupling (Nuclear field theory, Landau-Migdal theory protons, neutro of Fermi systems, quasiparticle-phonon model, ...) Towards spectroscopic accuracy: * nucleonic densitie Nuclear spectral properties and currents
 - Nuclear single-particle structure
 - Gross and fine structure of nuclear excited states: giant resonances, soft modes

collective coordinates

Correlations: beyond mean field and beyond QRPA effects

I. Mean field or energy density functional theory (EDFT)

Covariant EDFT (P.Ring et al.)

E[R] (7-9 parameters)

II. "Correlations": Quasiparticle-vibration
Coupling and NpNh correlations derived SC
by field theory technique
(Nuclear field theory, ext. Landau-Migdal theory)

Singleparticle motion: (s.p. levels, spectroscopic factors) Nuclear Response: (Excitation spectra of collective and noncollective nature

Excited states: nuclear response function

Time blocking

Solution:

Timeprojection operator:

V.I. Tselyaev, Yad. Fiz. 50,1252 (1989)

Blocked terms: 3p3h, 4p4h,...

Time blocking approximation = = "one-fish" approximation! Separation of the integrations in the BSE kernel
 R has the correct pole structure (spectral representation)
 »» Strength function is positive definite!

Response to an external field: strength function

$$\begin{split} S(E) &= -\frac{1}{\pi} \lim_{\Delta \to +0} Im \ \Pi_{PP}(E + i\Delta) \\ & \text{Polarizability:} \\ \Pi_{PP}(\omega) &= P^{\dagger} R(\omega) P := \sum_{k_1 k_2 k_3 k_4} P^*_{k_1 k_2} R_{k_1 k_4, k_2 k_3}(\omega) P_{k_3 k_4} \end{split}$$

External field

Transition density:

$$\rho_{k_1k_2}^{\nu} = \langle 0 | \psi_{k_2}^{\dagger} \psi_{k_1} | \nu \rangle$$

Response function:

$$R_{k_1k_4,k_2k_3}^{\nu}(\omega) \approx \frac{\rho_{k_1k_2}^{\nu}\rho_{k_3k_4}^{\nu*}}{\omega - \Omega^{\nu}}$$

 $\omega \rightarrow \Omega^{\nu}$

Giant Dipole Resonance

within Relativistic Quasiparticle Time Blocking Approximation (RQTBA)*

$$P = \sum_{i=1}^{A} \left(\tau_{z}^{(i)} - \frac{N-Z}{2A} \right) r_{i} Y_{1M}(\hat{\vec{r}_{i}})$$

ΔL = 1 ΔT = 1 ΔS = 0

Transitions: fragmentation mechanism (schematic)

Electric dipole excitations in stable nuclei

Dipole strength in neutron-rich Sn: Coulomb dissociation data & RQTBA calculations

*P. Adrich, A. Klimkewicz, M. Fallot et al., PRL 95, 132501 (2005)
** E. Litvinova, P. Ring, V. Tselyaev, PRC 75, 064308 (2007)
E.L. et al, PRC 79, 054312 (2009)

Dipole strength in Sn isotopes

E.L. et al, PRC 79, 054312 (2009)

Dipole strength in Sn isotopes

E.L. et al, PRC 79, 054312 (2009)

Dipole excitations in neutron-rich Ni isotopes

cross section [mb]

cross section [mb]

cross section [mb]

Low-lying quadrupole spectra in ⁶⁸Ni – ⁷⁸Ni

Strongly fragmented single-quasiparticle states are observed in ⁶⁹Ni

Coupling to phonons should strongly modify the g.s. as compared to RHB (RH-BCS)

> No substraction of '2q+phonon' static contribution in RQTBA phonons

Extension of the model: E1 calculations with 'dressed' (RQTBA) phonon vertices are needed (in progress)

Fragmentation of pygmy dipole resonance

E. L., P. Ring, and V. Tselyaev, Phys. Rev. C 78, 014312 (2008)

Low-lying dipole strength in ¹¹⁶Sn

Isospin structure of the pygmy dipole resonance in ¹²⁴Sn

Fine structure of spectra: next-order correlations from "2q+phonon" to "2 phonons"

Nuclear response:

$$R = A + A (V + \overline{\Phi} - \overline{\Phi}_0) R$$

Poles may appear at lower energies:

'2q+phonon' response: $Φ_{iji'j'}(ω) \sim Σ_{\mu k} α_{ijk\mu}/(ω - E_{i'} - E_k - Ω_{\mu})$

'2 phonon' response: $\Phi_{i,ii',i'}(\omega) \sim \Sigma_{\mu\nu} \alpha_{i,ii',i'}/(\omega - \Omega_{\nu} - \Omega_{\mu})$

Fine features of dipole spectra: two-phonon effects

Absorption cross section in ¹³⁶Ba

R. Massarczyk et al. PRC 86, 014319 (2012)

Mitglied der Heimholtz-Gemeinsch

Bonald Schwengner | Institut für Strahlenphysik | http://www.bzdr.

Radiative neutron capture in the Hauser-Feshbach model: standard Lorentzians and microscopic structure

E. L., H.P. Loens, K. Langanke, et al. Nucl. Phys. A 823, 26 (2009).

(n,y) stellar reaction rates

E. L., H.P. Loens, K. Langanke, et al. Nucl. Phys. A 823, 26 (2009).

PDR at neutron threshold

Gamow-Teller Resonance in 208-Pb

"Proton-Neutron" relativistic time blocking approximation: ρ , π , phonons

Quenching of S⁻ due to ph+phonon configurations

Isovector spin-monopole resonance in 208-Pb

"Proton-Neutron" relativistic time blocking approximation: ρ , π , phonons

IVSMR - overtone of GTR

Spin & isospin-flip excitations: spin-dipole resonance

T. Marketin, E.L., D. Vretenar, P. Ring, PLB 706, 477 (2012).

See talk of **Tomislav Marketin** for more details

Temperature dependence of low-lying dipole strength: Continuum QRPA at finite temperature revisited*

Strong continuum effects at $\epsilon_v \sim 0$

Finite-"temperature" CEDF

Maximum entropy principle

 $\delta \Omega = 0$:

$$\Omega(\lambda, T) = E - \lambda N - TS$$

$$S[\mathcal{R}] = -Tr(\mathcal{R}\ln\mathcal{R})$$

Leads to:

$$\mathcal{R} = \frac{1}{e^{\mathcal{H}/T} + 1}$$
$$\mathcal{H} = \frac{\delta E[\mathcal{R}]}{\delta \mathcal{R}}$$

Finite-temperature CEDF E[p] = = Thermal Relativistic Mean Field (TRMF)

FG = **Fermi** gas: $T = [(E-\delta)/a]^{1/2}$

T. Rauscher, Astrophys. J. Suppl. Ser. 147, 403 (2003).

Density matrix variation:

$$\delta \mathcal{R}(x;\omega,T) = \delta \mathcal{R}^{(0)}(x;\omega,T) + \int dx' dx'' \mathcal{A}(x,x';\omega,T) F(x',x'') \delta \mathcal{R}(x'';\omega,T)$$

Thermal "mean-field + pairing" propagator in the continuum : E.L. et al., Phys. Atomic Nuclei 66, 558 (2003)

$$\begin{split} \mathcal{A}(x,x';\omega,T) &= \sum_{1234} \varphi_1^*(x) \varphi_2(x) \varphi_3(x') \varphi_4^*(x') \int \frac{d\varepsilon}{2\pi i} G_{12}(\varepsilon,T) G_{34}(\varepsilon+\omega,T) \\ \textbf{Gamma-strength function} & \textbf{Thermally averaged} \\ S(E_{\gamma},T) &= -\frac{1}{\pi} \underbrace{1 - e^{-E_{\gamma}/T}}_{1 - e^{-E_{\gamma}/T}} \text{Im} \langle D^{\dagger} \delta \mathcal{R}(E_{\gamma} + i\Delta,T) \rangle \end{split}$$

Dipole gamma-strength function (preliminary)

- •Enhancement at lowest energies;
- Superfluid phase transition
- Violation of Brink hypothesis ?

M. Guttormsen et al., PRC 71, 044307 (2005) M. Wiedeking et al., PRL 108, 162503 (2012):

Dipole gamma-strength function (preliminary)

•Consequences for (n,γ) reaction rates -?

•For electric dipole polarizability (EDP) - ???

For EDP - neutron skin correlation - ??

QTBA Calculations with Skyrme functional

Self-consistent calculations within the extended theory of finite Fermi systems

HFB from J. Dobaczewski

A. Avdeenkov^{a,b}, F. Grümmer^a, S. Kamerdzhiev^b, S. Krewald^a, N. Lyutorovich^{a,c}, J. Speth^{a,d,*}

^a Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich, Germany
 ^b Institute of Physics and Power Engineering, 249020 Obninsk, Russia
 ^c Institute of Physics, St. Petersburg University, Russia
 ^d Institute of Nuclear Physics, PAN, PL-31-342 Cracow, Poland

+ QTBA from E.L., V. Tselyaev, PRC 75, 054318 (2007)

PLB 653, 196 (2007)

[G. 1: E1 photo absorption cross section for ¹²⁰Sn and ¹³²Sn lculated within the present theory (full). The dotted lines dicate the data for ¹²⁰Sn [32] and ¹³²Sn [33]. The smearing rameter is $\Delta = 0.2$ MeV. The SLy4 Skyrme parametrization was used.

FIG. 2: E1 photo absorption cross section for 132 Sn calculated within the present theory with different Skyrme forces. The smearing parameter is $\Delta = 0.2$ MeV. The dotted line are the data of ref. [33].

Giant monopole resonance in "soft" tin isotopes

FIG. 1. (Color online) Isoscalar giant monopole resonance in the even- $A^{112-124}$ Sn isotopes calculated within QRPA (dashed line) and QTBA (solid line). The results are obtained within the self-consistent HF+BCS approach based on the T5 Skyrme force. The smearing parameter Δ is equal to 500 keV. Experimental data (solid squares) are taken from Ref. [18].

Energy

(MeV)